A375055 Nonsquarefree numbers k divisible by at least 3 distinct primes.
60, 84, 90, 120, 126, 132, 140, 150, 156, 168, 180, 198, 204, 220, 228, 234, 240, 252, 260, 264, 270, 276, 280, 294, 300, 306, 308, 312, 315, 336, 340, 342, 348, 350, 360, 364, 372, 378, 380, 396, 408, 414, 420, 440, 444, 450, 456, 460, 468, 476, 480, 490, 492, 495
Offset: 1
Examples
a(1) = 60 = 2^2 * 3 * 5, the smallest number such that bigomega(60) > omega(60) > 2. Bigomega(60) = 4, omega(60) = 3. 72 is not in the sequence because it is the product of 2 distinct prime factors. a(2) = 84 = 2^2 * 3 * 7, since bigomega(84) = 4, omega(84) = 3. a(3) = 90 = 2 * 3^2 * 5, since bigomega(90) = 4, omega(90) = 3. a(4) = 120 = 2^3 * 3 * 5, since bigomega(120) = 5, omega(120) = 3. 210 is not in the sequence because it is squarefree. a(35) = 360 = 2^3 * 3^2 * 5 since bigomega(360) = 6, omega(360) = 3. a(43) = 420 = 2^2 * 3 * 5 * 7 since bigomega(420) = 5, omega(420) = 4, etc. . Table showing pairs of factors of a(n) for select n, such that the pair possesses quality Q (see comments). n a(n) pair of factors with quality Q. ------------------------------------------------------------------- 1 60 6 X 10; 2 84 6 X 14; 3 90 6 X 15; 4 120 6 X 20, 10 X 12; 5 126 6 X 21; 6 132 6 X 22; 7 140 10 X 14; 8 150 10 X 15; 17 240 6 X 40, 10 X 24, 12 X 20; 51 480 6 X 80, 10 X 48, 12 X 40, 20 X 24; 117 840 6 X 140, 10 X 84, 12 X 70, 14 X 60, 20 X 42, 28 X 30.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[500], PrimeOmega[#] > PrimeNu[#] > 2 &]
Comments