A375071 Smallest k such that Product_{i=1..k} (n+i) divides Product_{i=1..k} (n+k+i), or 0 if there is no such k.
1, 5, 4, 207, 206, 2475, 984, 8171, 8170, 45144, 45143, 3648830, 3648829, 7979077, 7979076, 58068862, 58068861, 255278295, 255278294
Offset: 0
Examples
3*4*5*6 ∣ 7*8*9*10, so a(2) = 4.
Links
- Thomas Bloom, Problem 389, Erdős Problems.
Programs
-
PARI
a(n) = my(k=1); while(prod(i=1, k, n+k+i)%prod(i=1, k, n+i), k++); k;
-
Python
from itertools import count def A375071(n): a, b = n+1, n+2 for k in count(1): if not b%a: return k a *= n+k+1 b = b*(n+2*k+1)*(n+2*k+2)//(n+k+1) # Chai Wah Wu, Aug 01 2024
Extensions
a(10)-a(18) from Bhavik Mehta, Aug 16 2024
Comments