A375085 Triangle read by rows: T(n,k) is the number of ballotlike paths ending at (n, k), with 0 <= k <= n.
0, 0, 1, 1, 1, 1, 2, 3, 2, 1, 5, 9, 6, 3, 1, 14, 28, 21, 10, 4, 1, 42, 90, 76, 39, 15, 5, 1, 132, 297, 276, 159, 64, 21, 6, 1, 429, 1001, 1002, 643, 288, 97, 28, 7, 1, 1430, 3432, 3641, 2555, 1281, 475, 139, 36, 8, 1, 4862, 11934, 13261, 10004, 5536, 2300, 733, 191, 45, 9, 1
Offset: 0
Examples
Triangle begins: 0; 0, 1; 1, 1, 1; 2, 3, 2, 1; 5, 9, 6, 3, 1; 14, 28, 21, 10, 4, 1; 42, 90, 76, 39, 15, 5, 1; 132, 297, 276, 159, 64, 21, 6, 1; ...
Links
- Alexander Lazar and Svante Linusson, Two-Row Set-Valued Tableaux: Catalan+k Combinatorics, Proceedings of the 36th Conference on Formal Power Series and Algebraic Combinatorics (Bochum), Séminaire Lotharingien de Combinatoire 91B (2024) Article #80, 12 pp. See p. 10.
Programs
-
Mathematica
T[n_,k_]:=Binomial[2n-2,n-k-1]-Binomial[2n-2,n-k-2]+Binomial[n-2,n-k]; Table[T[n,k],{n,0,10},{k,0,n}]//Flatten
-
Python
from math import isqrt from sympy import binomial def A375085(n): a = (m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)) b = n-binomial(a+1,2) return int(binomial(c:=a-1<<1,d:=a-b-1)-binomial(c,d-1)+binomial(a-2,d+1)) if n else 0 # Chai Wah Wu, Nov 14 2024
Comments