A375133 Number of integer partitions of n whose maximal anti-runs have distinct maxima.
1, 1, 1, 2, 3, 4, 5, 8, 10, 14, 17, 23, 29, 38, 47, 60, 74, 93, 113, 141, 171, 211, 253, 309, 370, 447, 532, 639, 758, 904, 1066, 1265, 1487, 1754, 2053, 2411, 2813, 3289, 3823, 4454, 5161, 5990, 6920, 8005, 9223, 10634, 12218, 14048, 16101, 18462, 21107
Offset: 0
Keywords
Examples
The partition y = (6,5,5,4,3,3,2,1) has maximal anti-runs ((6,5),(5,4,3),(3,2,1)), with maxima (6,5,3), so y is counted under a(29). The a(0) = 1 through a(9) = 14 partitions: () (1) (2) (3) (4) (5) (6) (7) (8) (9) (21) (31) (32) (42) (43) (53) (54) (211) (41) (51) (52) (62) (63) (311) (321) (61) (71) (72) (411) (322) (422) (81) (421) (431) (432) (511) (521) (522) (3211) (611) (531) (3221) (621) (4211) (711) (4221) (4311) (5211) (32211)
Links
- John Tyler Rascoe, Table of n, a(n) for n = 0..300
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n], UnsameQ@@Max/@Split[#,UnsameQ]&]],{n,0,30}]
-
PARI
A_x(N) = {my(x='x+O('x^N), f=sum(i=0,N,(x^i)*prod(j=1,i-1,(1-x^(3*j))/(1-x^j)))); Vec(f)} A_x(51) \\ John Tyler Rascoe, Aug 21 2024
Formula
G.f.: Sum_{i>=0} (x^i * Product_{j=1..i-1} (1-x^(3*j))/(1-x^j)). - John Tyler Rascoe, Aug 21 2024
Comments