A375178 a(n) = Sum_{k = 0..n-1} binomial(n+k-1, k)^3 (same as A112028 with an extra 0 at the start).
0, 1, 9, 244, 9065, 389376, 18188478, 897376152, 46011772521, 2427553965160, 130930630643384, 7186614533569296, 400132290102421214, 22543708920891189136, 1282873288801683197250, 73628947696550668509744, 4257138240245923453355625, 247733479854085081062353400, 14498252738780732999484606360
Offset: 0
Examples
Examples of supercongruences: a(7) - a(1) = 897376152 - 1 = (7^5)*107*499 == 0 (mod 7^5) a(11) - a(1) = 7186614533569296 - 1 = 5*(11^5)*8924644409 == 0 (mod 11^5).
Links
- Romeo Meštrović, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2012), arXiv:1111.3057 [math.NT], (2011).
Programs
-
Maple
seq(add( binomial(n+k-1, k)^3, k = 0..n-1), n = 0..20);
Formula
a(n) = Sum_{k = 0..n-1} (-1)^k * binomial(-n, k)^3.
a(n) ~ 2^(6*n-3)/(7*Pi^(3/2)*n^(3/2)). - Vaclav Kotesovec, Aug 03 2024
Comments