A375179 a(n) = Sum_{k = 0..n-1} (-1)^(n+k+1)*binomial(2*n, k)^3.
0, 1, 63, 3160, 154175, 7623126, 385867944, 20012582304, 1061140695615, 57352579248250, 3150527165580938, 175455318597459264, 9885323482971453608, 562487110567071566800, 32279596239888192636000, 1866149091367606758188160, 108583784076103277424118335, 6354063452012073380091209250
Offset: 0
Examples
Examples of supercongruences: a(7) - a(1) = 20012582304 - 1 = (7^5)*389*3061 == 0 (mod 7^5); a(17) - a(1) = 6354063452012073380091209250 - 1 = (17^5)*6007*15725921* 47373254231 == 0 (mod 17^5).
Links
- Romeo Meštrović, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2012), arXiv:1111.3057 [math.NT], (2011).
Programs
-
Maple
seq(add( (-1)^(n+k+1)*binomial(2*n, k)^3, k = 0..n-1), n = 0..20);
Formula
a(n) ~ 2^(6*n-1) / (Pi^(3/2) * n^(3/2)). - Vaclav Kotesovec, Aug 08 2024
Comments