A375180 a(n) = Sum_{k = 0..n-1} (-1)^(n+k+1)*binomial(3*n, k)^3.
0, 1, 215, 45928, 10362231, 2450260001, 600869373182, 151570671244560, 39096342054496887, 10267275084850974619, 2736324289110748127715, 738255282011665067114400, 201254884472471159485086750, 55352399437924814524429123488, 15341068552569688728602977821596
Offset: 0
Examples
Examples of supercongruences: a(7) - a(1) = 151570671244560 - 1 = (7^5)*379*2269*10487 == 0 (mod 7^5); a(13) - a(1) = 55352399437924814524429123488 - 1 = (13^5)*149080105032749915900459 == 0 (mod 13^5).
Links
- Romeo Meštrović, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2012), arXiv:1111.3057 [math.NT], (2011).
Programs
-
Maple
seq(add( (-1)^(n+k+1)*binomial(3*n, k)^3, k = 0..n-1), n = 0..20);
Formula
a(n) ~ 3^(9*n - 1/2) / (Pi^(3/2) * n^(3/2) * 2^(6*n+3)). - Vaclav Kotesovec, Aug 08 2024
Comments