cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A375198 Numbers k such that A025487(k)-1 and A025487(k)+1 are twin primes.

Original entry on oeis.org

3, 4, 6, 9, 13, 15, 20, 21, 24, 29, 30, 42, 54, 56, 59, 72, 77, 83, 96, 104, 105, 109, 138, 161, 166, 174, 186, 203, 208, 221, 232, 237, 266, 270, 288, 295, 336, 338, 347, 387, 389, 395, 400, 401, 449, 468, 469, 472, 479, 506, 520, 543, 584, 617, 633, 643, 668
Offset: 1

Views

Author

Amiram Eldar, Aug 04 2024

Keywords

Crossrefs

Similar sequences: A321995, A353302.

Programs

  • Mathematica
    Position[Cases[Import["https://oeis.org/A025487/b025487.txt", "Table"], {, }][[;; , 2]], _?(PrimeQ[# - 1] && PrimeQ[# + 1] &)] // Flatten

Formula

A025487(a(n)) = A375197(n).

A386526 Products m of primorials (i.e., m in A025487) such that both m-1 and m+1 are not squarefree.

Original entry on oeis.org

2097152, 13436928, 46656000, 1073741824, 1360800000, 12884901888, 1486016741376, 330225942528000, 358318080000000, 670777794086400, 1290482565120000, 64925062108545024, 69918208819200000, 137274424455168000, 164341563462254592, 277326388342554624, 415989582513831936
Offset: 1

Views

Author

Michael De Vlieger, Jul 24 2025

Keywords

Comments

Proper subset of A386527.

Examples

			Table of n, a(n), showing exponents of prime factors of a(n), and the prime decomposition of a(n)-1 and a(n)+1 for n = 1..6:
                 Exponents
n          a(n)  2.3.5.7  a(n)-1                    a(n)+1
-----------------------------------------------------------------------------
1      2097152  21        7^2, 127, 337             3^2, 43, 5419
2     13436928  11.8      7^2, 274223               11^2, 111049
3     46656000   9.6.3    13^2, 359, 769            7, 19^2, 37, 499
4   1073741824  30        3^2, 7, 11, 31, 151, 331  5^2, 13, 41, 61, 1321
5   1360800000   8.5.5.1  13^2, 107, 75253          11^2, 167, 67343
6  12884901888  32.1      11, 13^3, 563, 947        19^2, 35692249
		

Crossrefs

Programs

  • Mathematica
    (* Load function f from A025487, then: *)
    Select[Union@ Flatten@ f[12], AllTrue[# + {-1, 1}, Not @* SquareFreeQ] &]
Showing 1-2 of 2 results.