A386527 Numbers k in A055932 such that both k-1 and k+1 are not squarefree.
291600, 1406250, 2097152, 13436928, 34012224, 36382500, 46656000, 180033840, 393216000, 1073741824, 1360800000, 1771470000, 4900921200, 8576868300, 12884901888, 13588459500, 13608154560, 17496198720, 46490458680, 113810780160, 125475189840, 141557760000, 181474110720
Offset: 1
Keywords
Examples
Table of n, a(n), showing exponents of prime factors of a(n), and the prime decomposition of a(n)-1 and a(n)+1 for n = 1..6: Exponents n a(n) 2.3.5.7.11 a(n)-1 a(n)+1 ---------------------------------------------------------------------- 1 291600 4.6.2 7^2 * 11 * 541 17^2 * 1009 2 1406250 1.2.7 13^2 * 53 * 157 7^2 * 11 * 2609 3 2097152 21 7^2 * 127 * 337 3^2 * 43 * 5419 4 13436928 11.8 7^2 * 274223 11^2 * 111049 5 34012224 6.12 7^3 * 17 * 19 * 307 5^2 * 13 * 229 * 457 6 36382500 2.3.4.2.1 17^2 * 31^2 * 131 29^2 * 43261
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..508 (all terms less than A002110(16)).
- Michael De Vlieger, Mathematica algorithm for A055932.
Programs
-
Mathematica
(* Load the Mathematica algorithm in Links, then: *) Select[Union@ Flatten[a055932[10]], AllTrue[# + {-1, 1}, Not @* SquareFreeQ] &]
Comments