A375205 PrimePi(greatest prime < sqrt(Q)) - PrimePi(greatest prime factor(Q) < sqrt(Q)), with Q = A082686(n).
0, 0, 1, 1, 0, 1, 0, 2, 1, 2, 0, 1, 2, 1, 0, 1, 2, 0, 2, 1, 2, 0, 2, 1, 2, 0, 3, 2, 3, 1, 2, 3, 0, 2, 1, 3, 2, 3, 1, 0, 4, 2, 4, 4, 3, 1, 2, 0, 4, 2, 3, 4, 1, 4, 3, 2, 4, 0, 1, 3, 4, 4, 2, 0, 4, 1, 3, 2, 4, 3, 4, 0, 1, 4, 3, 2, 5, 4, 2, 1, 3, 5, 4, 5, 3
Offset: 1
Keywords
Examples
A082686(8)=51, with square root = 7.14... so the greatest prime < 7.14 is 7, while the greatest prime factor of 51 < 7.14 is 3. The prime count from 3 to 7 is 2, so a(8)=2. A082686(999)=2883 with square root = 53.69... so the greatest prime < 53.69 is 53, while the greatest prime factor of 2883 < 53.69 is 31. The prime count from 31 to 53 is 5, so a(999)=5.
Links
- Bill McEachen, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A082686.
Programs
-
Mathematica
nmax=85;q={};m=15;Until[Length[q]==nmax,If[ !PrimeQ[m]&&EvenQ[DivisorSigma[0, m]],AppendTo[q,m]];m=m+2];Table[PrimePi[NextPrime[Sqrt[q[[n]]],-1]]-PrimePi[Select[First/@FactorInteger[q[[n]]],#
James C. McMahon, Dec 06 2024 *)
Comments