cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A375220 T(n,k) is the number of permutations of the multiset {1, 1, 2, 2, ..., n, n} with k occurrences of fixed pairs (j,j), where T(n,k), n >= 2, 0 <= k <= n-2 is a triangle read by rows.

Original entry on oeis.org

5, 74, 15, 2193, 296, 30, 101644, 10965, 740, 50, 6840085, 609864, 32895, 1480, 75, 630985830, 47880595, 2134524, 76755, 2590, 105, 76484389121, 5047886640, 191522380, 5692064, 153510, 4144, 140, 11792973495032, 688359502089, 22715489880, 574567140, 12807144, 276318, 6216, 180
Offset: 2

Views

Author

Hugo Pfoertner, Aug 08 2024

Keywords

Examples

			The triangle begins
          5,
         74,       15,
       2193,      296,      30,
     101644,    10965,     740,    50,
    6840085,   609864,   32895,  1480,   75,
  630985830, 47880595, 2134524, 76755, 2590, 105
		

Crossrefs

Cf. A000217, A000680, A028895, A116218, A374980 (column 0), A375222 (column 1), A375223.
Cf. A375219 (similar for triples in the multiset).

Programs

  • PARI
    \\ using functions mima and a375219 from A375219, row n of triangle:
    a375219(n,sizeb=2)

Formula

T(n,n) = 1, T(n,n-1) = 0 (terms not in DATA),
T(n,n-2) = 5*n*(n-1)/2 = 5*A000217(n-1) = A028895(n-1),
Sum_{j=0..n-2} T(n,j) = (2*n)!/(2^n) - 1 = A000680(n) - 1,
Sum_{j=1..n-2} T(n,j) = A375223(n) - 1.
Showing 1-1 of 1 results.