A375262 Least positive integer m such that sigma(m)/phi(m) = n + 1/2, where sigma(.) and phi(.) are given by A000203 and A000010, respectively.
5, 459, 4, 10, 860, 18, 24, 11904, 588, 60, 1481172, 1080, 1320, 6236370, 1680, 144480, 10920, 674520, 27720, 25604040, 662535720, 1413720, 303783480, 4324320, 701205120
Offset: 1
Examples
a(1) = 5 with sigma(5)/phi(5) = 6/4 = 1 + 1/2. a(2) = 459 = 3^3*17 with sigma(459)/phi(459) = 720/288 = 2 + 1/2. a(20) = 25604040 = 2^3*3*5*7*11*17*163 with sigma(25604040)/phi(25604040) = 102021120/4976640 = 20 + 1/2.
Links
- B.S.K.R. Somayajulu, The sequence sigma(n)/phi(n), Math. Student, Vol. 45, No. 1 (1977), pp. 52-54; entire issue.
- Zhi-Wei Sun Is it true that {sigma(n)/phi(n): n >= 1} = {r in Q: r >= 1}? Question 476578 at MathOverflow, August 8, 2024.
Programs
-
Mathematica
sigma[n_]:=sigma[n]=DivisorSigma[1,n]; phi[n_]:=phi[n]=EulerPhi[n]; tab={};Do[m=1;While[sigma[m]/phi[m]!=n+1/2,m=m+1];tab=Append[tab,m],{n,1,20}];Print[tab]
-
PARI
a(n) = my(k=1); while (sigma(k)/eulerphi(k) != n + 1/2, k++); k; \\ Michel Marcus, Aug 08 2024
-
Python
from itertools import count from math import prod from sympy import factorint def A375262(n): for m in count(1): f = factorint(m) if ((n<<1)+1)*m*prod((p-1)**2 for p in f)==prod(p**(e+2)-p for p,e in f.items())<<1: return m # Chai Wah Wu, Aug 11 2024
Extensions
a(21)-a(24) from Amiram Eldar, Aug 08 2024
a(25) from Chai Wah Wu, Aug 12 2024
Comments