A375323 Natural numbers k for which there exist distinct nonzero naturals a,b,c, such that k = a + b + c and (a + b)*(b + c)*(c + a) is a perfect cube.
10, 19, 20, 30, 37, 38, 40, 46, 47, 50, 57, 60, 61, 66, 67, 68, 70, 74, 75, 76, 80, 90, 91, 92, 94, 95, 100, 101, 107, 109, 110, 111, 113, 114, 120, 122, 127, 129, 130, 131, 132, 133, 134, 136, 138, 139, 140, 141, 148, 150, 152, 160, 167, 169, 170, 171, 180, 182
Offset: 1
Keywords
Examples
10 = 1 + 2 + 7 and (1 + 2)*(2 + 7)*(7 + 1) = 27*8 = 6^3, is a cube, so 10 is a term. 19 = 1 + 7 + 11 and (1 + 7)*(7 + 11)*(11 + 1) = 8*18*12 = 2^3*6^3 = 12^3, is a cube, so 19 is a term. 57 = 3 + 7 + 47 and (3 + 7)*(7 + 47)*(47 + 3) = 10*54*50 = 27*1000 = 30^3, is a cube. Also 57 = 3 + 21 + 33 and (3 + 21)*(21 + 33)*(33 + 3) = 24*54*36 = 36^2*36 = 36^3, is a cube.
Links
- Junior Balkan Team Selection Tests - Romania 2023, Problems
Programs
-
Magma
[n:n in [1..200]|exists(u){:a in [1..n-2],b in [1..n-2]|a lt b and #{a,b,n-a-b} eq 3 and n-a-b gt 0 and IsPower((n-a)*(n-b)*(a+b),3)}];
-
Python
from itertools import count, islice from sympy import integer_nthroot def A375323_gen(startvalue=1): # generator of terms >= startvalue return (k for k in count(max(startvalue,1)) if any(integer_nthroot(a*(a*(m:=b-k)+b*(m-k)+k**2)-b*k*m,3)[1] for a in range(1,k//3) for b in range(a+1,k-a+1>>1))) A375323_list = list(islice(A375323_gen(),58)) # Chai Wah Wu, Oct 10 2024
Comments