cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375341 The maximum exponent in the prime factorization of the numbers that have exactly one non-unitary prime factor.

Original entry on oeis.org

2, 3, 2, 2, 4, 2, 2, 3, 2, 3, 2, 5, 3, 2, 2, 4, 2, 2, 2, 3, 3, 2, 2, 6, 2, 2, 2, 4, 4, 2, 3, 2, 2, 5, 2, 2, 3, 4, 2, 2, 3, 2, 2, 3, 2, 7, 2, 3, 3, 2, 2, 2, 2, 3, 2, 2, 5, 4, 2, 3, 2, 2, 2, 2, 4, 3, 2, 3, 6, 2, 2, 2, 4, 2, 2, 5, 2, 3, 2, 2, 4, 2, 5, 2, 2, 3, 3, 8, 2, 2, 3, 2, 3, 4, 2, 2, 2, 3, 2, 2, 2, 2, 3, 3
Offset: 1

Views

Author

Amiram Eldar, Aug 12 2024

Keywords

Comments

The positive terms in A375339.

Crossrefs

Programs

  • Mathematica
    s[n_] := Module[{e = Select[FactorInteger[n][[;; , 2]], # > 1 &]}, If[Length[e] == 1, e[[1]], Nothing]]; Array[s, 300]
  • PARI
    lista(kmax) = {my(e); for(k = 1, kmax, e = select(x -> x > 1, factor(k)[,2]); if(#e == 1, print1(e[1], ", ")));}

Formula

a(n) = A051903(A190641(n)).
a(n) = A005361(A190641(n)).
a(n) = A375339(A190641(n)).
a(n) = A132349(A057521(A190641(n))).
a(n) = 2 if and only if A190641(n) is in A060687.
a(n) = 3 if and only if A190641(n) is in A048109.
a(n) <= 3 if and only if A190641(n) is in A082293.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} (2*p-1)/((p-1)*(p^2-1)) / Sum_{p prime} 1/(p^2-1) = A375340 / A154945 = 2.74622231282166656595... .
Asymptotic second raw moment: = Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)^2 = Sum_{p prime} (4*p^2-3*p+1)/((p-1)^3*(p+1)) / Sum_{p prime} 1/(p^2-1) = 9.064902009520365378603... .