A375341 The maximum exponent in the prime factorization of the numbers that have exactly one non-unitary prime factor.
2, 3, 2, 2, 4, 2, 2, 3, 2, 3, 2, 5, 3, 2, 2, 4, 2, 2, 2, 3, 3, 2, 2, 6, 2, 2, 2, 4, 4, 2, 3, 2, 2, 5, 2, 2, 3, 4, 2, 2, 3, 2, 2, 3, 2, 7, 2, 3, 3, 2, 2, 2, 2, 3, 2, 2, 5, 4, 2, 3, 2, 2, 2, 2, 4, 3, 2, 3, 6, 2, 2, 2, 4, 2, 2, 5, 2, 3, 2, 2, 4, 2, 5, 2, 2, 3, 3, 8, 2, 2, 3, 2, 3, 4, 2, 2, 2, 3, 2, 2, 2, 2, 3, 3
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
s[n_] := Module[{e = Select[FactorInteger[n][[;; , 2]], # > 1 &]}, If[Length[e] == 1, e[[1]], Nothing]]; Array[s, 300]
-
PARI
lista(kmax) = {my(e); for(k = 1, kmax, e = select(x -> x > 1, factor(k)[,2]); if(#e == 1, print1(e[1], ", ")));}
Formula
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} (2*p-1)/((p-1)*(p^2-1)) / Sum_{p prime} 1/(p^2-1) = A375340 / A154945 = 2.74622231282166656595... .
Asymptotic second raw moment: = Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)^2 = Sum_{p prime} (4*p^2-3*p+1)/((p-1)^3*(p+1)) / Sum_{p prime} 1/(p^2-1) = 9.064902009520365378603... .
Asymptotic second central moment, or variance, is - ^2 = 1.52316501808078192104... and the asymptotic standard deviation is sqrt( - ^2) = 1.23416571743051667098... .
Comments