cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375361 Odd numbers with at least two prime divisors of the form 4*k + 1 counted with multiplicity.

Original entry on oeis.org

25, 65, 75, 85, 125, 145, 169, 175, 185, 195, 205, 221, 225, 255, 265, 275, 289, 305, 325, 365, 375, 377, 425, 435, 445, 455, 475, 481, 485, 493, 505, 507, 525, 533, 545, 555, 565, 575, 585, 595, 615, 625, 629, 663, 675, 685, 689, 697, 715, 725, 745, 765, 775
Offset: 1

Views

Author

Arkadiusz Wesolowski, Aug 13 2024

Keywords

Comments

Odd numbers k such that k^2 can be expressed as the arithmetic mean of two distinct perfect squares in more than one way. For example, 25^2 = (5^2 + 35^2)/2 = (17^2 + 31^2)/2.
Let x be a squared integer which is the central element of a 3 X 3 magic square in which seven (or more) of the entries are squared integers. If the greatest common divisor of all nine entries is 1, then the square root of x is a composite number that is divisible only by primes congruent to 1 mod 4. For example, sqrt(A221669(5)) = 425 is both in A004613 and in this sequence.

Examples

			65 is in this sequence because 65 has two prime factors of the form 4*k + 1, namely 5 = 4*1 + 1 and 13 = 4*3 + 1.
		

Crossrefs

Programs

  • Magma
    f:=func; nopf:=func; sum:=func; [n: n in [1..775 by 2] | sum(n) gt 1];
    
  • PARI
    isok(n) = my(v=Vec(factor(n))); n%2&&sum(t=1, omega(n), if((v[1]%4)[t]==1, v[2][t]))>1;
    
  • PARI
    isok(n) = my(t); if(n%2, for(k=sqrtint(n^2-1)+2, sqrtint(2*n^2-1), if(issquare(2*n^2-k^2)&&t++>1, return(1)))); 0;