A375361 Odd numbers with at least two prime divisors of the form 4*k + 1 counted with multiplicity.
25, 65, 75, 85, 125, 145, 169, 175, 185, 195, 205, 221, 225, 255, 265, 275, 289, 305, 325, 365, 375, 377, 425, 435, 445, 455, 475, 481, 485, 493, 505, 507, 525, 533, 545, 555, 565, 575, 585, 595, 615, 625, 629, 663, 675, 685, 689, 697, 715, 725, 745, 765, 775
Offset: 1
Keywords
Examples
65 is in this sequence because 65 has two prime factors of the form 4*k + 1, namely 5 = 4*1 + 1 and 13 = 4*3 + 1.
Programs
-
Magma
f:=func
; nopf:=func ; sum:=func ; [n: n in [1..775 by 2] | sum(n) gt 1]; -
PARI
isok(n) = my(v=Vec(factor(n))); n%2&&sum(t=1, omega(n), if((v[1]%4)[t]==1, v[2][t]))>1;
-
PARI
isok(n) = my(t); if(n%2, for(k=sqrtint(n^2-1)+2, sqrtint(2*n^2-1), if(issquare(2*n^2-k^2)&&t++>1, return(1)))); 0;
Comments