A375390 Numbers k such that k^2 + 1, k^2 + 3 and k^2 + 5 are semiprimes.
44, 102, 104, 108, 152, 188, 226, 234, 296, 328, 426, 526, 586, 692, 720, 842, 846, 856, 926, 994, 1076, 1278, 1284, 1386, 1426, 1484, 1498, 1574, 1704, 1746, 1764, 1822, 1826, 1848, 1952, 2058, 2114, 2128, 2142, 2148, 2164, 2186, 2386, 2416, 2442, 2484, 2640, 2704, 2904, 2948, 3108, 3142, 3164
Offset: 1
Keywords
Examples
a(3) = 104 is a term because 104^2 + 1 = 10817 = 29 * 373, 104^2 + 3 = 10819 = 31 * 349 and 104^2 + 5 = 10821 = 3 * 3607 are all semiprimes.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
select(t -> andmap(s -> numtheory:-bigomega(t^2+s)=2, [1,3,5]), 2*[$1..2000]);
-
Mathematica
Select[Range[3000], 2 == PrimeOmega[1 + #^2] == PrimeOmega[3 + #^2] == PrimeOmega [5 + #^2] &]
Comments