A375391 a(n) is the greatest odd number k such that n^2 + j is a semiprime for all odd numbers j from 1 to k.
-1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 3, 1, -1, -1, -1, 1, -1, -1, 1, -1, 9, 1, 3, -1, 3, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 3, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 3, 1, 3, -1, -1, -1, -1
Offset: 1
Keywords
Examples
a(44) = 9 since 44^2 + 1 = 1937 = 13 * 149, 44^2 + 3 = 1939 = 7 * 277, 44^2 + 5 = 1941 = 3 * 647, 44^2 + 7 = 1943 = 29 * 67 and 44^2 + 9 = 1945 = 5 * 389 are all semiprimes but 44^2 + 11 = 1947 = 3 * 11 * 59 is not a semiprime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) local i; for i from 1 by 2 while numtheory:-bigomega(n^2+i) = 2 do od: i-2 end proc: map(f, [$1..100]);
Comments