A375405 Number of integer partitions of n with a repeated part other than the least.
0, 0, 0, 0, 0, 1, 1, 3, 5, 8, 13, 20, 29, 42, 62, 83, 117, 158, 214, 283, 377, 488, 641, 823, 1058, 1345, 1714, 2154, 2713, 3387, 4222, 5230, 6474, 7959, 9782, 11956, 14591, 17737, 21529, 26026, 31422, 37811, 45425, 54418, 65097, 77652, 92510, 109943, 130468
Offset: 0
Keywords
Examples
The a(0) = 0 through a(10) = 13 partitions: . . . . . (221) (2211) (331) (332) (441) (442) (2221) (3221) (3321) (3322) (22111) (3311) (4221) (3331) (22211) (22221) (4411) (221111) (32211) (5221) (33111) (32221) (222111) (33211) (2211111) (42211) (222211) (322111) (331111) (2221111) (22111111)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..5000 (first 101 terms from John Tyler Rascoe)
- Gus Wiseman, Sequences counting and ranking compositions by their leaders (for six types of runs).
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n], !SameQ@@Min/@Split[#,UnsameQ]&]],{n,0,30}] - or - Table[Length[Select[IntegerPartitions[n], !UnsameQ@@DeleteCases[#,Min@@#]&]],{n,0,30}]
-
PARI
A_x(N) = {my(x='x+O('x^N), f=sum(i=1,N,sum(j=i+1,N-i, ((x^(i+(2*j)))/(1-x^i))*prod(k=i+1,N-i-(2*j), if(k
John Tyler Rascoe, Aug 21 2024
Formula
G.f.: Sum_{i>0} (Sum_{j>i} ( (x^(i+(2*j)))/(1-x^i) * Product_{k>=i} (1-[kJohn Tyler Rascoe, Aug 21 2024
Comments