cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A375409 Expansion of e.g.f. exp(-x * (1 - x)) / (1 - x).

Original entry on oeis.org

1, 0, 3, 2, 33, 84, 835, 4542, 42273, 353672, 3670371, 39704730, 480066433, 6221189532, 87210179043, 1307488285334, 20923882733505, 355680675491472, 6402415875542083, 121644826003391922, 2432903816934178401, 51090929833475100260, 1124000813126981130243
Offset: 0

Views

Author

Seiichi Manyama, Aug 14 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-x*(1-x))/(1-x)))
    
  • PARI
    a(n) = (-1)^n*n!*sum(k=0, n, binomial(k-1, n-k)/k!);

Formula

a(n) = (-1)^n * n! * Sum_{k=0..n} binomial(k-1,n-k)/k!.
a(n) = (n-1) * (a(n-1) + 3*a(n-2) - 2*(n-2)*a(n-3)).

A375412 Expansion of e.g.f. exp(x^2 * (1 - x)) / (1 - x).

Original entry on oeis.org

1, 1, 4, 6, 36, 60, 840, 3360, 48720, 317520, 4112640, 36923040, 503616960, 5976210240, 89132883840, 1287955468800, 21130876166400, 353720208441600, 6424780602240000, 121392008337600000, 2435685015296332800, 51056321187692620800, 1124423866880349235200
Offset: 0

Views

Author

Seiichi Manyama, Aug 14 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x^2*(1-x))/(1-x)))
    
  • PARI
    a(n) = (-1)^n*n!*sum(k=0, n\2, binomial(k-1, n-2*k)/k!);

Formula

a(n) = (-1)^n * n! * Sum_{k=0..floor(n/2)} binomial(k-1,n-2*k)/k!.
D-finite with recurrence a(n) -n*a(n-1) +2*(-n+1)*a(n-2) +5*(n-1)*(n-2)*a(n-3) -3*(n-1)*(n-2)*(n-3)*a(n-4)=0. - R. J. Mathar, Aug 14 2024
Showing 1-2 of 2 results.