A375421 a(n) is the number of distinct straight lines passing through the points (k, prime(k)) and (n, prime(n)) for k < n (where prime(k) denotes the k-th prime number).
0, 1, 2, 2, 4, 5, 5, 5, 6, 8, 9, 9, 9, 11, 10, 11, 13, 12, 16, 16, 14, 16, 16, 19, 22, 22, 21, 23, 24, 23, 28, 29, 27, 29, 30, 29, 29, 32, 31, 32, 34, 35, 35, 37, 36, 37, 39, 42, 44, 45, 45, 43, 44, 47, 47, 48, 48, 49, 46, 49, 49, 49, 56, 56, 53, 55, 61, 62
Offset: 1
Keywords
Examples
The first terms, alongside the corresponding lines, are: n a(n) Lines - ---- -------------------------------------------------------------- 1 0 {} 2 1 {x + 1} 3 2 {2*x - 1, 3/2*x + 1/2} 4 2 {2*x - 1, 5/3*x + 1/3} 5 4 {4*x - 9, 3*x - 4, 8/3*x - 7/3, 9/4*x - 1/4} 6 5 {3*x - 5, 8/3*x - 3, 5/2*x - 2, 2*x + 1, 11/5*x - 1/5} 7 5 {4*x - 11, 3*x - 4, 10/3*x - 19/3, 14/5*x - 13/5, 5/2*x - 1/2}
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
Programs
-
PARI
{ for (n = 1, #p = primes(68), print1 (#Set(vector(n-1, i, polinterpolate([i, n], [p[i], p[n]])))", ");); }
Formula
a(n) <= n-1.
a(n) = n-1-A334046(n). - Pontus von Brömssen, Feb 14 2025