A375430 The maximum exponent in the unique factorization of n in terms of distinct terms of A115975 using the dual Zeckendorf representation of the exponents in the prime factorization of n; a(1) = 0.
0, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 2, 2, 2, 1, 1, 1, 2, 1
Offset: 1
Examples
For n = 8 = 2^3, the dual Zeckendorf representation of 3 is 11, i.e., 3 = Fibonacci(2) + Fibonacci(3) = 1 + 2. Therefore 8 = 2^(1+2) = 2^1 * 2^2, and a(8) = 2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
A130312[n_] := Module[{k = 0}, While[Fibonacci[k] <= n, k++]; Fibonacci[k-2]]; a[n_] := A130312[1 + Max[FactorInteger[n][[;;, 2]]]]; a[1] = 0; Array[a, 100]
-
PARI
A130312(n) = {my(k = 0); while(fibonacci(k) <= n, k++); fibonacci(k-2);} a(n) = if(n == 1, 0, A130312(1 + vecmax(factor(n)[,2])));
Comments