A375431 The indices of the terms of A375430 in the Fibonacci sequence.
0, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 2, 4, 2, 3, 2, 3, 2, 2, 2, 3, 3, 2, 3, 3, 2, 2, 2, 4, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 4, 3, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 3, 4, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 4, 4, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 3, 2, 2, 2, 4, 2, 3, 3, 3, 2, 2, 2, 3, 2
Offset: 1
Examples
For n = 8 = 2^3, the dual Zeckendorf representation of 3 is 11, i.e., 3 = Fibonacci(2) + Fibonacci(3). Therefore 8 = 2^(Fibonacci(2) + Fibonacci(3)) = 2^Fibonacci(2) * 2^Fibonacci(3), and a(8) = 3.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
Formula
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3 - 1/zeta(2) + Sum_{k>=5} (1 - 1/zeta(Fibonacci(k)-1)) = 2.47666161947309359914... .
If the chosen index for 1 is 1 instead of 2, then the asymptotic mean is 3 - 2/zeta(2) + Sum_{k>=5} (1 - 1/zeta(Fibonacci(k)-1)) = 1.86873451761906697048... .
Comments