A375439 Expansion of g.f. A(x) satisfying A(x) = x + x^2 + (2*A(x)^3 + A(x^3))/3.
1, 1, 1, 2, 4, 9, 20, 48, 117, 290, 734, 1880, 4868, 12730, 33556, 89072, 237904, 638873, 1723930, 4672008, 12710904, 34703894, 95054188, 261116816, 719223064, 1985934212, 5496123033, 15242821108, 42357113994, 117918233704, 328833828334, 918470764376, 2569238134248, 7197046596440
Offset: 1
Keywords
Examples
G.f.: A(x) = x + x^2 + x^3 + 2*x^4 + 4*x^5 + 9*x^6 + 20*x^7 + 48*x^8 + 117*x^9 + 290*x^10 + 734*x^11 + 1880*x^12 + 4868*x^13 + 12730*x^14 + 33556*x^15 + ... where A(x) = x + x^2 + (2*A(x)^3 + A(x^3))/3. RELATED SERIES. A(x)^3 = x^3 + 3*x^4 + 6*x^5 + 13*x^6 + 30*x^7 + 72*x^8 + 175*x^9 + 435*x^10 + 1101*x^11 + 2819*x^12 + 7302*x^13 + 19095*x^14 + 50332*x^15 + ... Let B(x) be the series reversion of A(x), B(A(x)) = x, then B(x) begins B(x) = x - x^2 + x^3 - 2*x^4 + 4*x^5 - 9*x^6 + 22*x^7 - 57*x^8 + 152*x^9 - 411*x^10 + 1119*x^11 - 3063*x^12 + 8436*x^13 - 23405*x^14 + 65452*x^15 + ... SPECIFIC VALUES. A(1/3) = 0.6046115975458048490061476622502250915528261368314569825... where A(1/3) = 4/9 + (2*A(1/3)^3 + A(1/27))/3. A(1/4) = 0.345218924086872316546119663994502755734706567000751... A(1/5) = 0.253555647303827972834265469178971877524548605418192... A(1/6) = 0.201444567662949882659512632012060178593075505771758... A(1/7) = 0.167365364255434800795732539120237367470157092655512... A(1/8) = 0.143236474390624253781858259379882809014038308155736... A(1/27) = 0.03846365186207481603806452459437536518999937182129...
Links
- Paul D. Hanna, Table of n, a(n) for n = 1..1000
Programs
-
PARI
{a(n) = my(A=[0,1],Ax=x); for(i=1,n, A = concat(A,0); Ax=Ser(A); A[#A] = polcoeff( x + x^2 + ( 2*Ax^3 + subst(Ax,x,x^3) )/3 - Ax,#A-1) );A[n+1]} for(n=1,40,print1(a(n),", "))
Formula
a(n) ~ c * d^n / n^(3/2), where d = 2.9308423020191987018531615662206918839933116797613922... and c = 0.186346847470275688362452238277535367815900456286173... - Vaclav Kotesovec, Aug 22 2024
Comments