cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375439 Expansion of g.f. A(x) satisfying A(x) = x + x^2 + (2*A(x)^3 + A(x^3))/3.

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 20, 48, 117, 290, 734, 1880, 4868, 12730, 33556, 89072, 237904, 638873, 1723930, 4672008, 12710904, 34703894, 95054188, 261116816, 719223064, 1985934212, 5496123033, 15242821108, 42357113994, 117918233704, 328833828334, 918470764376, 2569238134248, 7197046596440
Offset: 1

Views

Author

Paul D. Hanna, Aug 21 2024

Keywords

Comments

Conjecture: a(n) is odd iff n is in A038754, which consists of numbers of the form 3^k and 2*3^k.

Examples

			G.f.: A(x) = x + x^2 + x^3 + 2*x^4 + 4*x^5 + 9*x^6 + 20*x^7 + 48*x^8 + 117*x^9 + 290*x^10 + 734*x^11 + 1880*x^12 + 4868*x^13 + 12730*x^14 + 33556*x^15 + ...
where A(x) = x + x^2 + (2*A(x)^3 + A(x^3))/3.
RELATED SERIES.
A(x)^3 = x^3 + 3*x^4 + 6*x^5 + 13*x^6 + 30*x^7 + 72*x^8 + 175*x^9 + 435*x^10 + 1101*x^11 + 2819*x^12 + 7302*x^13 + 19095*x^14 + 50332*x^15 + ...
Let B(x) be the series reversion of A(x), B(A(x)) = x, then B(x) begins
B(x) = x - x^2 + x^3 - 2*x^4 + 4*x^5 - 9*x^6 + 22*x^7 - 57*x^8 + 152*x^9 - 411*x^10 + 1119*x^11 - 3063*x^12 + 8436*x^13 - 23405*x^14 + 65452*x^15 + ...
SPECIFIC VALUES.
A(1/3) = 0.6046115975458048490061476622502250915528261368314569825...
where A(1/3) = 4/9 + (2*A(1/3)^3 + A(1/27))/3.
A(1/4) = 0.345218924086872316546119663994502755734706567000751...
A(1/5) = 0.253555647303827972834265469178971877524548605418192...
A(1/6) = 0.201444567662949882659512632012060178593075505771758...
A(1/7) = 0.167365364255434800795732539120237367470157092655512...
A(1/8) = 0.143236474390624253781858259379882809014038308155736...
A(1/27) = 0.03846365186207481603806452459437536518999937182129...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[0,1],Ax=x); for(i=1,n, A = concat(A,0); Ax=Ser(A);
    A[#A] = polcoeff( x + x^2 + ( 2*Ax^3 + subst(Ax,x,x^3) )/3 - Ax,#A-1) );A[n+1]}
    for(n=1,40,print1(a(n),", "))

Formula

a(n) ~ c * d^n / n^(3/2), where d = 2.9308423020191987018531615662206918839933116797613922... and c = 0.186346847470275688362452238277535367815900456286173... - Vaclav Kotesovec, Aug 22 2024