A375518 First differences of A375516.
1, 2, 8, 36, 1152, 240000, 9696240000, 11752718457744180000, 15347376819435640459450549232576160000, 23554197523775043569951631809272942030408567274885169881327076295276944000
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..12
Programs
-
Maple
s:= proc(n) s(n):= `if`(n=0, 0, s(n-1)+1/(n*b(n))) end: b:= proc(n) b(n):= 1+floor(1/((1-s(n-1))*n)) end: a:= n-> denom(s(n+1))-denom(s(n)): seq(a(n), n=0..10); # Alois P. Heinz, Oct 19 2024
-
Mathematica
s[n_] := s[n] = If[n == 0, 0, s[n - 1] + 1/(n*b[n])]; b[n_] := b[n] = 1 + Floor[1/((1 - s[n - 1])*n)]; a[n_] := Denominator[s[n + 1]] - Denominator[s[n]]; Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Feb 14 2025, after Alois P. Heinz *)
Extensions
a(0)=1 prepended by Alois P. Heinz, Oct 19 2024
Comments