A375519 Number of positive integers with Pisano period equal to n.
1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 3, 0, 2, 0, 1, 0, 10, 0, 1, 0, 2, 0, 8, 0, 4, 0, 1, 0, 9, 0, 1, 0, 11, 0, 8, 0, 2, 0, 3, 0, 55, 0, 6, 0, 2, 0, 6, 0, 11, 0, 3, 0, 49, 0, 1, 0, 8, 0, 8, 0, 2, 0, 13, 0, 133, 0, 1, 0, 6, 0, 20, 0, 46, 0, 1, 0, 49, 0, 3, 0, 27, 0, 81, 0, 4, 0, 10, 260, 0, 2, 0, 38
Offset: 1
Keywords
Programs
-
Python
from functools import lru_cache from math import gcd, lcm from sympy import factorint, divisors, fibonacci def A375519(n): @lru_cache(maxsize=None) def A001175(n): if n == 1: return 1 f = factorint(n).items() if len(f) > 1: return lcm(*(A001175(a**b) for a,b in f)) else: k,x = 1, (1,1) while x != (0,1): k += 1 x = (x[1], (x[0]+x[1]) % n) return k a, b = fibonacci(n+1), fibonacci(n) return sum(1 for d in divisors(gcd(a-1,b),generator=True) if A001175(d)==n) # Chai Wah Wu, Aug 28 2024
Formula
a(2n) = A375089(n). - Chai Wah Wu, Aug 28 2024
Comments