A375089 Number of positive integers with Pisano period equal to 2n.
0, 0, 1, 1, 1, 1, 1, 2, 3, 2, 1, 10, 1, 2, 8, 4, 1, 9, 1, 11, 8, 2, 3, 55, 6, 2, 6, 11, 3, 49, 1, 8, 8, 2, 13, 133, 1, 6, 20, 46, 1, 49, 3, 27, 81, 4, 1, 260, 2, 38, 20, 11, 1, 106, 21, 78, 20, 4, 7, 874, 1, 6, 81, 48, 29, 49, 3, 27, 42, 108, 1, 1319, 3, 14, 174, 23, 13, 101, 1, 444
Offset: 1
Keywords
Examples
a(9) = 3 because the Pisano periods of 76, 38, and 19, but no others, are 2*9=18. There are no numbers with Pisano period 2 or 4, so a(1) = a(2) = 0.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..314 (terms 1..239 from Oliver Lippard)
- B. Benfield and O. Lippard, Fixed points of K-Fibonacci Pisano periods, arXiv:2404.08194 [math.NT], 2024.
- J. D. Fulton and W. L. Morris, On arithmetical functions related to the Fibonacci numbers, Acta Arithmetica 16 (1969), 105-110.
Programs
-
Python
from functools import lru_cache from math import gcd, lcm from sympy import factorint, divisors, fibonacci def A375089(n): @lru_cache(maxsize=None) def A001175(n): if n == 1: return 1 f = factorint(n).items() if len(f) > 1: return lcm(*(A001175(a**b) for a,b in f)) else: k,x = 1, (1,1) while x != (0,1): k += 1 x = (x[1], (x[0]+x[1]) % n) return k a, b = fibonacci((m:=n<<1)+1), fibonacci(m) return sum(1 for d in divisors(gcd(a-1,b),generator=True) if A001175(d)==m) # Chai Wah Wu, Aug 28 2024
-
Sage
def a(n): num=0 if n<3: return 0 x=gcd(fibonacci(2*n),fibonacci(2*n+1)-1) for d in divisors(x): if BinaryRecurrenceSequence(1,1,0,1).period(d)==2*n: num+=1 return num for i in range(1,101): print(a(i))
Comments