cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A375522 a(n) is the denominator of Sum_{k = 1..n} 1 / (k*A375781(k)).

Original entry on oeis.org

1, 2, 6, 15, 105, 1155, 1336335, 892896284280, 398631887241408183843480, 19863422690705846097977473796903171171326157280, 14091270035344566960604487534521565339065390839583445590118556137472614250693240040301050080
Offset: 0

Views

Author

Rémy Sigrist and N. J. A. Sloane, Aug 30 2024

Keywords

Comments

Let S(n) = Sum_{k = 1..n} 1 / (k*A375781(k)) = S1(n)/S2(n) when reduced to lowest terms, where S1(n) = A375521(n), S2(n) = the present sequence.
The differences S2(n) - S1(n) are surprisingly small: for n = 1,2,...,34 the values S2(n) - S1(n) are:
1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
suggesting the conjecture that they are always 1 except for n = 4 and 6 (compare the Theorem in A374983).

Examples

			The first few fractions are 0/1, 1/2, 5/6, 14/15, 103/105, 1154/1155, 1336333/1336335, 892896284279/892896284280, ...
		

Crossrefs

Programs

  • Maple
    s:= proc(n) s(n):= `if`(n=0, 0, s(n-1)+1/(ithprime(n)*b(n))) end:
    b:= proc(n) b(n):= 1+floor(1/((1-s(n-1))*ithprime(n))) end:
    a:= n-> denom(s(n)):
    seq(a(n), n=0..10);  # Alois P. Heinz, Oct 18 2024
  • Mathematica
    s[n_] := s[n] = If[n == 0, 0, s[n - 1] + 1/(Prime[n]*b[n])];
    b[n_] := b[n] = 1 + Floor[1/((1 - s[n - 1])*Prime[n])];
    a[n_] := Denominator[s[n]];
    Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Apr 22 2025, after Alois P. Heinz *)
  • Python
    from itertools import islice
    from math import gcd
    from sympy import nextprime
    def A375522_gen(): # generator of terms
        p, q, k = 0, 1, 1
        while (k:=nextprime(k)):
            m=q//(k*(q-p))+1
            p, q = p*k*m+q, k*m*q
            p //= (r:=gcd(p,q))
            q //= r
            yield q
    A375522_list = list(islice(A375522_gen(),11)) # Chai Wah Wu, Aug 30 2024

Extensions

a(0)=1 prepended by Alois P. Heinz, Oct 18 2024

A375528 a(n) = denominator of Sum_{k = 1..n} 1 / (A000959(k)*A375527(k)).

Original entry on oeis.org

1, 2, 6, 42, 630, 57330, 219172590, 2287458514758690, 523246645674205487113407810300, 34223381526163442974989472671319545640510650941743506071550, 65068880171408068403202506207461768112305307530373013598603234255112994800902512713302330140957468591804616490482800
Offset: 1

Views

Author

N. J. A. Sloane, Sep 01 2024

Keywords

Comments

The first few sums S(n) = Sum_{k = 1..n} 1/(A000959(k)*A375527(k)) are: 1/2, 5/6, 41/42, 629/630, 57329/57330,
219172589/219172590, 2287458514758689/2287458514758690,
523246645674205487113407810299/523246645674205487113407810300, ..., and the first 10 or 11 of these sums have the form (c-1)/c, where c is an integer. The present sequence gives the denominators.
For the harmonic series analog, A374663, Rémy Sigrist has shown that all the partial sums have that form (see A374983), and for the prime number analog, A375581, it seems that all partial sums except for n = 4 and 6 have this property (see A375521/A375522).

Crossrefs

Showing 1-2 of 2 results.