cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375550 Triangle read by rows: T(m, n, k) = binomial(n + 1, n - k)*hypergeom([m, k - n], [k + 2], -1) for m = 4.

Original entry on oeis.org

1, 6, 1, 25, 7, 1, 88, 32, 8, 1, 280, 120, 40, 9, 1, 832, 400, 160, 49, 10, 1, 2352, 1232, 560, 209, 59, 11, 1, 6400, 3584, 1792, 769, 268, 70, 12, 1, 16896, 9984, 5376, 2561, 1037, 338, 82, 13, 1, 43520, 26880, 15360, 7937, 3598, 1375, 420, 95, 14, 1
Offset: 0

Views

Author

Peter Luschny, Sep 23 2024

Keywords

Comments

Triangle T(m,n,k) is a Riordan array of the form ((1-x)^(m-1)*(1-2x)^(-m-1), x/(1-x)), for m = 3. - Igor Victorovich Statsenko, Feb 08 2025

Examples

			Triangle starts:
  [0]     1;
  [1]     6,     1;
  [2]    25,     7,     1;
  [3]    88,    32,     8,    1;
  [4]   280,   120,    40,    9,    1;
  [5]   832,   400,   160,   49,   10,    1;
  [6]  2352,  1232,   560,  209,   59,   11,   1;
  [7]  6400,  3584,  1792,  769,  268,   70,  12,  1;
  [8] 16896,  9984,  5376, 2561, 1037,  338,  82, 13,  1;
  [9] 43520, 26880, 15360, 7937, 3598, 1375, 420, 95, 14, 1;
  ...
Seen as an array of the columns:
  [0] 1,  6, 25,  88,  280,  832,  2352,  6400,  16896, ...
  [1] 1,  7, 32, 120,  400, 1232,  3584,  9984,  26880, ...
  [2] 1,  8, 40, 160,  560, 1792,  5376, 15360,  42240, ...
  [3] 1,  9, 49, 209,  769, 2561,  7937, 23297,  65537, ...
  [4] 1, 10, 59, 268, 1037, 3598, 11535, 34832, 100369, ...
  [5] 1, 11, 70, 338, 1375, 4973, 16508, 51340, 151709, ...
  [6] 1, 12, 82, 420, 1795, 6768, 23276, 74616, 226325, ...
		

Crossrefs

Column k: A055585 (k=0), A001794 (k=1), A001789 (k=2), A027608 (k=3), A055586 (k=4).
Cf. A145018 (diagonal n-2), A375549 (row sums), A049612 (alternating row sums), A122433.

Programs

  • Maple
    T := (m, n, k) -> binomial(n + 1, n - k)*hypergeom([m, k - n], [k + 2], -1);
    for n from 0 to 9 do seq(simplify(T(4, n, k)), k = 0..n) od;
    # As a binomial sum:
    T := (m, n, k) -> add(binomial(m + j, m)*binomial(n + 1, n - (j + k)), j = 0..n-k):
    for n from 0 to 9 do [n], seq(T(3, n, k), k = 0..n) od;
    # Alternative, generating the array of the columns:
    cgf := k -> (1 - x)^(2 - k) / (1 - 2*x)^4:
    ser := (k, len) -> series(cgf(k), x, len + 2):
    Tcol := (k, len) -> seq(coeff(ser(k, len), x, j), j = 0..len):
    seq(lprint([k], Tcol(k, 8)), k = 0..6);

Formula

T(m, n, k) = Sum_{j=0..n-k} binomial(m + j, m)*binomial(n + 1, n - (j + k)) for m = 3.
G.f. of column k: (1 - x)^(2 - k) / (1 - 2*x)^4.