cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375555 Triangle read by rows: T(n, k) = abs(A181937(k, n)), where A181937 are the André numbers, for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 3, 1, 1, 1, 16, 9, 4, 1, 1, 1, 61, 19, 14, 5, 1, 1, 1, 272, 99, 34, 20, 6, 1, 1, 1, 1385, 477, 69, 55, 27, 7, 1, 1, 1, 7936, 1513, 496, 125, 83, 35, 8, 1, 1, 1, 50521, 11259, 2896, 251, 209, 119, 44, 9, 1
Offset: 0

Views

Author

Peter Luschny, Aug 19 2024

Keywords

Comments

See A181937 for comments and references.

Examples

			Triangle starts:
  [0]  1;
  [1]  1, 1;
  [2]  1, 1,    1;
  [3]  1, 1,    2,    1;
  [4]  1, 1,    5,    3,   1;
  [5]  1, 1,   16,    9,   4,   1;
  [6]  1, 1,   61,   19,  14,   5,  1;
  [7]  1, 1,  272,   99,  34,  20,  6,  1;
  [8]  1, 1, 1385,  477,  69,  55, 27,  7, 1;
  [9]  1, 1, 7936, 1513, 496, 125, 83, 35, 8, 1;
.
Seen as an array:
  [0]  1, 1,      1,      1,      1,      1,      1,      1, ...
  [1]  1, 1,      2,      3,      4,      5,      6,      7, ...
  [2]  1, 1,      5,      9,     14,     20,     27,     35, ...
  [3]  1, 1,     16,     19,     34,     55,     83,    119, ...
  [4]  1, 1,     61,     99,     69,    125,    209,    329, ...
  [5]  1, 1,    272,    477,    496,    251,    461,    791, ...
  [6]  1, 1,   1385,   1513,   2896,   2300,    923,   1715, ...
  [7]  1, 1,   7936,  11259,  11056,  15775,  10284,   3431, ...
		

Crossrefs

Cf. A181937, A375554 (row sums), A030662 (central terms, main diagonal of array), A010763 (central terms of the (1, 1)-based variant).

Programs

  • Maple
    Andre := proc(n, k) option remember; local j;
      ifelse(k = 0, 1, ifelse(n = 0, 1,
      -add(binomial(k, j) * Andre(n, j), j = 0..k-1, n))) end:
    T := (n, k) -> abs(Andre(k, n)): seq(seq(T(n, k), k = 0..n), n = 0..10);
  • Mathematica
    Andre[n_, k_] := Andre[n, k] = If[k <= 0, 1, If[n == 0, 1, -Sum[Binomial[k, j] Andre[n, j], {j, 0, k-1, n}]]];
    (* Seen as an array: *)
    A[n_, k_] := Abs[Andre[k, n + k]];
    Table[A[n, k], {n, 0, 9}, {k, 0, 7}] // MatrixForm