cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A375167 Expansion of e.g.f. 1 / (1 + x * log(1 - x^2/2)).

Original entry on oeis.org

1, 0, 0, 3, 0, 15, 180, 210, 5040, 51030, 207900, 3991680, 42411600, 356756400, 6485398920, 80635054500, 1040690851200, 19440077857200, 291313362740400, 4914773560897200, 98182334033784000, 1763213788027692000, 35636304386103220800, 778379605589616030000
Offset: 0

Views

Author

Seiichi Manyama, Aug 19 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x*log(1-x^2/2))))
    
  • PARI
    a(n) = n!*sum(k=0, n\2, (n-2*k)!*abs(stirling(k, n-2*k, 1))/(2^k*k!));

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} (n-2*k)! * |Stirling1(k,n-2*k)|/(2^k*k!).

A375556 Expansion of e.g.f. 1 / (1 + x * log(1 - x^3/6)).

Original entry on oeis.org

1, 0, 0, 0, 4, 0, 0, 70, 1120, 0, 5600, 184800, 2217600, 1201200, 61661600, 1513512000, 16682265600, 38118080000, 1440863424000, 31721866176000, 352561745536000, 2053230379200000, 68832104140800000, 1449890913639168000, 17583390443114496000
Offset: 0

Views

Author

Seiichi Manyama, Aug 19 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x*log(1-x^3/6))))
    
  • PARI
    a(n) = n!*sum(k=0, n\3, (n-3*k)!*abs(stirling(k, n-3*k, 1))/(6^k*k!));

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} (n-3*k)! * |Stirling1(k,n-3*k)|/(6^k*k!).
Showing 1-2 of 2 results.