A375581 Numbers m such that there exists an integer k >= 1 for which the concatenation of m, 2m, ..., km is an m-digit number.
1, 2, 3, 4, 5, 7, 9, 10, 12, 14, 15, 19, 20, 23, 27, 30, 33, 34, 37, 40, 43, 46, 49, 50, 53, 58, 59, 64, 69, 74, 79, 83, 84, 88, 93, 97, 103, 107, 111, 112, 116, 120, 124, 125, 129, 133, 137, 141, 146, 150, 154, 158, 162, 166, 167, 171, 175, 179, 183, 187, 191
Offset: 1
Examples
7 is a term because the concatenation of 7, 14, 21, 28 is 7142128 which has 7 digits. 21 is not a term because the concatenation of 21, 42, ..., 168 has 20 digits but concatenating this with 168+21 = 189 gives a number with 23 digits.
Crossrefs
Cf. A375461 (increment by 1).
Programs
-
Mathematica
SelfIncrementingQ[n_] := Module[{len=Length@IntegerDigits[n],num,c=1,numDigits=0}, numDigits = len*Ceiling[(10^len - n)/n]; If[numDigits >= n, Return[Mod[n, len] == 0]]; num = Ceiling[10^len/n]*n; While[numDigits < n + 1, If[(len + c)*Ceiling[(10^(len + c) - num)/n] >= n - numDigits, Return[Mod[n - numDigits, len + c] == 0], numDigits += (len + c)*Ceiling[(10^(len + c) - num)/n] ]; num += Ceiling[(10^(len + c) - num)/n]*n; c++; ] ] Select[Range[191],SelfIncrementingQ]
Comments