A375584 a(n) = digit produced when the Michael Damm error-detecting algorithm is applied to n.
0, 3, 1, 7, 5, 9, 8, 6, 4, 2, 1, 7, 5, 0, 9, 8, 3, 4, 2, 6, 7, 0, 9, 2, 1, 5, 4, 8, 6, 3, 8, 9, 4, 5, 3, 6, 2, 0, 1, 7, 3, 6, 7, 4, 2, 0, 9, 5, 8, 1, 2, 5, 8, 1, 4, 3, 6, 7, 9, 0, 9, 4, 3, 8, 6, 1, 7, 2, 0, 5, 5, 8, 6, 9, 7, 2, 0, 1, 3, 4, 6, 1, 2, 3, 0, 4, 5, 9
Offset: 1
Links
- H. Michael Damm, Totally anti-symmetric quasigroups for all orders n not equal to 2 or 6, Discrete Math., 307:6 (2007), 715-729.
- Wikipedia, Damm algorithm.
Programs
-
Python
t = [ [0, 3, 1, 7, 5, 9, 8, 6, 4, 2], [7, 0, 9, 2, 1, 5, 4, 8, 6, 3], [4, 2, 0, 6, 8, 7, 1, 3, 5, 9], [1, 7, 5, 0, 9, 8, 3, 4, 2, 6], [6, 1, 2, 3, 0, 4, 5, 9, 7, 8], [3, 6, 7, 4, 2, 0, 9, 5, 8, 1], [5, 8, 6, 9, 7, 2, 0, 1, 3, 4], [8, 9, 4, 5, 3, 6, 2, 0, 1, 7], [9, 4, 3, 8, 6, 1, 7, 2, 0, 5], [2, 5, 8, 1, 4, 3, 6, 7, 9, 0] ] def a(n): i = 0 for d in str(n): i = t[i][int(d)] return i print([a(n) for n in range(0, 88)])