cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A375586 Expansion of e.g.f. 1 / (1 + x - x * exp(x^2/2)).

Original entry on oeis.org

1, 0, 0, 3, 0, 15, 180, 105, 5040, 46305, 132300, 3752595, 33679800, 243378135, 5565940380, 56191160025, 712410098400, 14889814164225, 183558878603100, 3236148386145675, 66650136566013000, 1027807726886515575, 21983938825036488300, 469896981350215644225
Offset: 0

Views

Author

Seiichi Manyama, Aug 19 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x-x*exp(x^2/2))))
    
  • PARI
    a(n) = n!*sum(k=0, n\2, (n-2*k)!*stirling(k, n-2*k, 2)/(2^k*k!));

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} (n-2*k)! * Stirling2(k,n-2*k)/(2^k*k!).

A375592 Expansion of e.g.f. exp( x * (exp(x^3/6) - 1) ).

Original entry on oeis.org

1, 0, 0, 0, 4, 0, 0, 70, 560, 0, 2800, 92400, 369600, 200200, 19619600, 252252000, 695094400, 5717712000, 171531360000, 1307259553600, 4852431584000, 136882025280000, 2175699958432000, 12698089211808000, 150837908212992000, 3848134863773200000
Offset: 0

Views

Author

Seiichi Manyama, Aug 19 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x*(exp(x^3/6)-1))))
    
  • PARI
    a(n) = n!*sum(k=0, n\3, stirling(k, n-3*k, 2)/(6^k*k!));

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} Stirling2(k,n-3*k)/(6^k*k!).
Showing 1-2 of 2 results.