cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375594 Decimal expansion of Pi*(Pi^2*log(2) + 4*log(2)^3 + 6*zeta(3))/48.

Original entry on oeis.org

1, 0, 0, 6, 9, 8, 0, 4, 8, 4, 9, 6, 2, 5, 1, 5, 5, 8, 7, 0, 2, 5, 0, 7, 0, 6, 8, 8, 4, 4, 5, 9, 9, 9, 3, 3, 0, 9, 1, 8, 1, 1, 8, 3, 8, 4, 2, 9, 5, 7, 7, 3, 6, 5, 1, 2, 0, 9, 7, 6, 6, 8, 3, 5, 8, 7, 6, 6, 7, 3, 8, 3, 7, 5, 7, 7, 5, 9, 5, 9, 6, 9, 3, 4, 0, 0, 7, 8, 4, 7, 1, 0, 9, 8, 0, 4, 3, 6, 1, 5, 8, 5
Offset: 1

Views

Author

R. J. Mathar, Aug 20 2024

Keywords

Comments

Apart from a factor sqrt(Pi)/16 the same as Adamchik's generalized Stirling number [1/2,4].

Examples

			1.006980484962515...
		

Crossrefs

Cf. A019669 (2F1), A173623 (3F2), A318741 (4F3).

Programs

  • Maple
    1/48*Pi*(Pi^2*log(2)+4*log(2)^3+6*Zeta(3)) ; evalf(%) ;
  • Mathematica
    First[RealDigits[Pi*(Pi^2*Log[2] + 4*Log[2]^3 + 6*Zeta[3])/48, 10, 100]] (* Paolo Xausa, Aug 23 2024 *)

Formula

Equals 5F4(1/2,1/2,1/2,1/2,1/2; 3/2,3/2,3/2,3/2; 1) = Sum_{k>= 0} binomial(2k,k)/[2^(2k)*(2k+1)^4].
Equals A196878/6. - R. J. Mathar, Aug 23 2024