cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375617 Numbers of facially complete 2-connected planar embeddings.

Original entry on oeis.org

0, 0, 1, 3, 6, 15, 32, 94, 295, 1169, 4870, 22110, 102490, 489479, 2370856, 11655722, 57918613, 290697549, 1471349079, 7504192109, 38532719288, 199076246027, 1034236802988, 5400337234593, 28329240686563, 149244907924935, 789351357094770, 4190055030317638
Offset: 1

Views

Author

Eric W. Weisstein, Aug 21 2024

Keywords

Programs

  • Mathematica
    prism[n_] := Floor[((n - 3)^2 + 6)/12]
    tetrahedral[n_] := prism[n - 1]
    bipartite[n_] := prism[n - 2]
    wheel[n_] := (Mod[n - 1, 2] + 3) 2^Quotient[n - 1, 2]/4 + DivisorSum[n - 1, EulerPhi[#] 2^((n - 1)/#) &]/(2 (n - 1)) - 3
    cycle[n_] := Module[{f, F, x},
      f[x_, m_] := x + Sum[(Binomial[s - 2, r - 1] Binomial[r + s - 1, s] x^s)/r, {r, m}, {s, 2, m}];
      F[x_, m_] := Series[((3 x^2 - 2 x f[x, m] + f[x, m]^2) - (2 + 2 x + 7 x^2 - 4 x f[x, m] + 2 f[x, m]^2) f[x^2, m] + 2 f[x^2, m]^2)/(4 (2 f[x^2, m] - 1)) + Sum[If[Mod[k, d] == 0, (EulerPhi[d] f[x^d, m]^(k/d))/k, 0], {k, 3, m}, {d, k}]/2, {x, 0, m}];
      CoefficientList[F[x, n], x][[-1]]]
    a[1] = a[2] = 0;
    a[n_] := prism[n] + tetrahedral[n] + bipartite[n] + wheel[n] + cycle[n]
    Table[a[n], {n, 20}]

Formula

a(n) = A001399(n - 6) + A001399(n - 7) + A001399(n - 8) + (A056342(n - 1) - 1) + A001004(n).