A375617 Numbers of facially complete 2-connected planar embeddings.
0, 0, 1, 3, 6, 15, 32, 94, 295, 1169, 4870, 22110, 102490, 489479, 2370856, 11655722, 57918613, 290697549, 1471349079, 7504192109, 38532719288, 199076246027, 1034236802988, 5400337234593, 28329240686563, 149244907924935, 789351357094770, 4190055030317638
Offset: 1
Keywords
Links
- Eric W. Weisstein, Table of n, a(n) for n = 1..100
- James Tilley, Stan Wagon, and Eric Weisstein, A Catalog of Facially Complete Graphs, arXiv:2409.11249 [math.CO], 2024. See pp. 7,11.
- Eric Weisstein's World of Mathematics, Facially Complete Planar Embedding.
Programs
-
Mathematica
prism[n_] := Floor[((n - 3)^2 + 6)/12] tetrahedral[n_] := prism[n - 1] bipartite[n_] := prism[n - 2] wheel[n_] := (Mod[n - 1, 2] + 3) 2^Quotient[n - 1, 2]/4 + DivisorSum[n - 1, EulerPhi[#] 2^((n - 1)/#) &]/(2 (n - 1)) - 3 cycle[n_] := Module[{f, F, x}, f[x_, m_] := x + Sum[(Binomial[s - 2, r - 1] Binomial[r + s - 1, s] x^s)/r, {r, m}, {s, 2, m}]; F[x_, m_] := Series[((3 x^2 - 2 x f[x, m] + f[x, m]^2) - (2 + 2 x + 7 x^2 - 4 x f[x, m] + 2 f[x, m]^2) f[x^2, m] + 2 f[x^2, m]^2)/(4 (2 f[x^2, m] - 1)) + Sum[If[Mod[k, d] == 0, (EulerPhi[d] f[x^d, m]^(k/d))/k, 0], {k, 3, m}, {d, k}]/2, {x, 0, m}]; CoefficientList[F[x, n], x][[-1]]] a[1] = a[2] = 0; a[n_] := prism[n] + tetrahedral[n] + bipartite[n] + wheel[n] + cycle[n] Table[a[n], {n, 20}]