A375623 Maximum value of F(p) = Sum (|i-j| - |p(i)-p(j)|)^2 where the sum is over all 1 <= i < j <= n, for all permutations p in the symmetric group S_n.
0, 0, 0, 2, 12, 30, 72, 132, 240, 380, 600, 870, 1260, 1722, 2532, 3080
Offset: 0
Programs
-
Maple
F := proc(S) local i, j, M; M := 0; for j from 1 to nops(S) do for i from 1 to j-1 do M := M + (abs(i - j) - abs(S[i] - S[j]))^2 od: od: M end: a := proc(n) local P, m, u, mm; P := combinat:-permute(n); m := 0; for u in P do mm := F(u); if mm > m then m := mm fi; od: m end:
-
PARI
a375623(n) = my(m=0); forperm(n, p, m=max(m, sum(i=1,n, sum(j=1,i-1,(abs(i-j)-abs(p[i]-p[j]))^2)))); m \\ Hugo Pfoertner, Aug 22 2024
Extensions
a(11)-a(13) from Hugo Pfoertner, Aug 23 2024
a(14) from Markus Sigg, Aug 25 2024
a(15) from Hugo Pfoertner, Sep 04 2024
Comments