A375660 Expansion of e.g.f. 1 / (1 - x * (exp(x) - 1))^2.
1, 0, 4, 6, 80, 370, 4152, 34034, 413632, 4744674, 66354680, 954512482, 15454225536, 263909265074, 4898255210968, 96284064551250, 2022022344889472, 44858682139345090, 1052826609589372152, 25994393541984673154, 674563101823606851520, 18337775305498096349202
Offset: 0
Keywords
Programs
-
PARI
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x*(exp(x)-1))^2))
-
PARI
a(n) = n!*sum(k=0, n\2, (k+1)!*stirling(n-k, k, 2)/(n-k)!);
Formula
E.g.f.: B(x)^2, where B(x) is the e.g.f. of A052848.
a(n) = n! * Sum_{k=0..floor(n/2)} (k+1)! * Stirling2(n-k,k)/(n-k)!.