A375703 Minimum of the n-th maximal run of adjacent (increasing by one at a time) non-perfect-powers.
2, 5, 10, 17, 26, 28, 33, 37, 50, 65, 82, 101, 122, 126, 129, 145, 170, 197, 217, 226, 244, 257, 290, 325, 344, 362, 401, 442, 485, 513, 530, 577, 626, 677, 730, 785, 842, 901, 962, 1001, 1025, 1090, 1157, 1226, 1297, 1332, 1370, 1445, 1522, 1601, 1682, 1729
Offset: 1
Keywords
Examples
The list of all non-perfect-powers, split into runs, begins: 2 3 5 6 7 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 28 29 30 31 33 34 35 37 38 39 40 41 42 43 44 45 46 47 48 Row n has length A375702, first a(n), last A375704, sum A375705.
Crossrefs
Programs
-
Mathematica
radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1; Min/@Split[Select[Range[100],radQ],#1+1==#2&]//Most - or - radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1; Select[Range[100],radQ[#]&&!radQ[#-1]&]
Formula
Numbers k > 0 such that k-1 is a perfect power (A001597) but k is not.
Comments