cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A375732 a(n) is the number of partitions of n having a cube number of parts whose sum of cubes is a cube.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 5, 2, 2, 1, 2, 2, 2, 4, 5, 9, 4, 5, 2, 6, 9, 9, 13, 12, 16, 8, 10, 8, 13, 19, 20, 26, 23, 23, 22, 22, 30, 38, 45, 47, 60, 54, 77, 87, 83, 89, 88, 104, 131, 156, 170, 202, 208, 220, 241
Offset: 0

Views

Author

Felix Huber, Aug 28 2024

Keywords

Examples

			a(37) counts the 4 partitions [1, 1, 1, 2, 6, 8, 9, 9] with 8 = 2^3 parts and 1^3 + 1^3 + 1^3 + 2^3 + 6^3 + 8^3 + 9^3 + 9^3 = 13^3, [1, 1, 2, 4, 4, 6, 8, 11] with 8 = 2^3 parts and 1^3 + 1^3 + 2^3 + 4^3 + 4^3 + 6^3 + 8^3 + 11^3 = 13^3, [1, 1, 1, 2, 2, 2, 10, 18] with 8 = 2^3 parts and 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 10^3 + 18^3 = 19^3, [37] with 1 = 1^3 part and 37^3 = 37^3.
		

Crossrefs

Programs

  • Maple
    # first Maple program to calculate the sequence:
    A375732:=proc(n) local a,i,j; a:=0; for i in combinat:-partition(n) do if type(root(numelems(i),3),integer) and type(root(add(i[j]^3,j=1..nops(i)),3), integer) then a:=a+1 fi od; return a end proc; seq(A375732(n),n=0..75);
    # second Maple program to calculate the partitions:
    A375732part:=proc(n) local L,i,j; L:=[]; for i in combinat:-partition(n) do if type(root(numelems(i),3),integer) and type(root(add(i[j]^3,j=1..nops(i)), 3),integer) then L:=[op(L),i] fi od; return op(L); end proc; A375732part(37);
  • PARI
    a(n) = my(nb=0); forpart(p=n, if (ispower(#p,3) && ispower(sum(k=1, #p, p[k]^3),3), nb++)); nb; \\ Michel Marcus, Sep 01 2024

Formula

1 <= a(n) <= A240128(n).

A382407 a(n) is the number of partitions n = x + y + z of positive integers such that x*y + y*z + x*z is a perfect square.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 3, 0, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 3, 0, 5, 1, 1, 2, 3, 3, 2, 1, 1, 3, 6, 1, 4, 2, 7, 4, 4, 0, 3, 5, 3, 4, 2, 1, 7, 2, 1, 5, 9, 3, 5, 3, 4, 1, 9, 2, 6, 3, 5, 6, 5, 4, 7, 5, 1, 5, 6, 3, 13, 7, 8, 4, 6, 0, 4, 4, 11, 5, 13, 2
Offset: 1

Views

Author

Felix Huber, Apr 04 2025

Keywords

Comments

a(n) is the number of distinct cuboids with edge length 4*n whose surface area is half of a square.
Conjecture: a(k) = 0 iff k is an element of {2, 4, 8, 13} union A000244 union A005030.

Examples

			The a(14) = 3 partitions [x, y, z] are [1, 1, 12], [1, 4, 9] and [4, 4, 6] because 1*1 + 1*12 + 1*12 = 5^2, 1*4 + 4*9 + 1*9 = 7^2 and 4*4 + 4*6 + 4*6 = 8^2.
		

Crossrefs

Programs

  • Maple
    A382407:=proc(n)
        local a,x,y,z;
        a:=0;
        for x to n/3 do
            for y from x to (n-x)/2 do
                z:=n-x-y;
                if issqr(x*y+x*z+y*z) then
                    a:=a+1
                fi
            od
        od;
        return a
    end proc;
    seq(A382407(n),n=1..87);
Showing 1-2 of 2 results.