cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375734 Indices of consecutive prime-powers (exclusive) differing by 1. Positions of 1's in A057820.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 17, 43, 70, 1077, 6635, 12369, 43578, 105102700
Offset: 1

Views

Author

Gus Wiseman, Sep 04 2024

Keywords

Comments

The corresponding prime-powers A246655(a(n)) are given by A006549.
From A006549, it is not known whether this sequence is infinite.

Examples

			The fifth prime-power is 7 and the sixth is 8, so 5 is in the sequence.
		

Crossrefs

For nonprime numbers (A002808) we have A375926, differences A373403.
Positions of 1's in A057820.
First differences are A373671.
For nonsquarefree numbers we have A375709, differences A373409.
For non-prime-powers we have A375713.
For non-perfect-powers we have A375740.
For squarefree numbers we have A375927, differences A373127.
Prime-powers:
- terms: A000961, complement A024619.
- differences: A057820.
- anti-runs: A373576, A120430, A006549, A373671
Non-prime-powers:
- terms: A361102
- differences: A375708
- anti-runs: A373679, A373575, A255346, A373672
A000040 lists all of the primes, differences A001223.
A025528 counts prime-powers up to n.

Programs

  • Mathematica
    Join@@Position[Differences[Select[Range[100],PrimePowerQ]],1]

Formula

Numbers k such that A246655(k+1) - A246655(k) = 1.
The inclusive version is a(n) + 1 shifted.

Extensions

a(14) from Amiram Eldar, Sep 24 2024