cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A057820 First differences of sequence of consecutive prime powers (A000961).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 2, 3, 1, 2, 4, 2, 2, 2, 2, 1, 5, 4, 2, 4, 2, 4, 6, 2, 3, 3, 4, 2, 6, 2, 2, 6, 8, 4, 2, 4, 2, 4, 8, 4, 2, 1, 3, 6, 2, 10, 2, 6, 6, 4, 2, 4, 6, 2, 10, 2, 4, 2, 12, 12, 4, 2, 4, 6, 2, 2, 8, 5, 1, 6, 6, 2, 6, 4, 2, 6, 4, 14, 4, 2, 4, 14, 6, 6, 4, 2, 4, 6, 2, 6, 6, 6, 4, 6, 8, 4, 8, 10, 2, 10
Offset: 1

Views

Author

Labos Elemer, Nov 08 2000

Keywords

Comments

a(n) = 1 iff A000961(n) = A006549(k) for some k. - Reinhard Zumkeller, Aug 25 2002
Also run lengths of distinct terms in A070198. - Reinhard Zumkeller, Mar 01 2012
Does this sequence contain all positive integers? - Gus Wiseman, Oct 09 2024

Examples

			Odd differences arise in pairs in neighborhoods of powers of 2, like {..,2039,2048,2053,..} gives {..,11,5,..}
		

Crossrefs

For perfect-powers (A001597) we have A053289.
For non-perfect-powers (A007916) we have A375706.
Positions of ones are A375734.
Run-compression is A376308.
Run-lengths are A376309.
Sorted positions of first appearances are A376340.
The second (instead of first) differences are A376596, zeros A376597.
Prime-powers:
- terms: A000961 or A246655, complement A024619
- differences: A057820 (this), first appearances A376341
- anti-runs: A373576, A120430, A006549, A373671
Non-prime-powers:
- terms: A361102
- differences: A375708 (ones A375713)
- anti-runs: A373679, A373575, A255346, A373672

Programs

  • Haskell
    a057820_list = zipWith (-) (tail a000961_list) a000961_list
    -- Reinhard Zumkeller, Mar 01 2012
    
  • Maple
    A057820 := proc(n)
            A000961(n+1)-A000961(n) ;
    end proc: # R. J. Mathar, Sep 23 2016
  • Mathematica
    Map[Length, Split[Table[Apply[LCM, Range[n]], {n, 1, 150}]]] (* Geoffrey Critzer, May 29 2015 *)
    Join[{1},Differences[Select[Range[500],PrimePowerQ]]] (* Harvey P. Dale, Apr 21 2022 *)
  • PARI
    isA000961(n) = (omega(n) == 1 || n == 1)
    n_prev=1;for(n=2,500,if(isA000961(n),print(n-n_prev);n_prev=n)) \\ Michael B. Porter, Oct 30 2009
    
  • Python
    from sympy import primepi, integer_nthroot
    def A057820(n):
        def f(x): return int(n+x-1-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        r, k = m, f(m)+1
        while r != k: r, k = k, f(k)+1
        return r-m # Chai Wah Wu, Sep 12 2024

Formula

a(n) = A000961(n+1) - A000961(n).

Extensions

Offset corrected and b-file adjusted by Reinhard Zumkeller, Mar 03 2012

A375927 Numbers k such that A005117(k+1) - A005117(k) = 1. In other words, the k-th squarefree number is 1 less than the next.

Original entry on oeis.org

1, 2, 4, 5, 7, 9, 10, 14, 15, 18, 19, 21, 22, 24, 25, 27, 28, 30, 35, 36, 38, 40, 41, 43, 44, 46, 48, 49, 51, 53, 54, 58, 59, 62, 63, 65, 66, 68, 69, 71, 72, 74, 76, 79, 80, 82, 84, 85, 87, 88, 90, 94, 96, 97, 101, 102, 105, 107, 108, 110, 111, 113, 114, 116
Offset: 1

Views

Author

Gus Wiseman, Sep 12 2024

Keywords

Comments

The asymptotic density of this sequence is Product_{p prime} (1 - 1/(p^2-1)) = 0.53071182... (A065469). - Amiram Eldar, Sep 15 2024

Examples

			The squarefree numbers are 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, ... which first increase by one after terms 1, 2, 4, 5, ...
		

Crossrefs

Positions of 1's in A076259.
For prime-powers (A246655) we have A375734.
First differences are A373127.
For nonsquarefree instead of squarefree we have A375709.
For nonprime numbers we have A375926, differences A373403.
For composite numbers we have A375929.
The complement is A375930, differences A120992.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.
A053797 gives lengths of runs of nonsquarefree numbers, firsts A373199.
A375707 counts squarefree numbers between consecutive nonsquarefree numbers.

Programs

  • Mathematica
    Join@@Position[Differences[Select[Range[100],SquareFreeQ[#]&]],1]
  • PARI
    lista(kmax) = {my(is1 = 1, is2, c = 1); for(k = 2, kmax, is2 = issquarefree(k); if(is2, c++); if(is1 && is2, print1(c-1, ", ")); is1 = is2);} \\ Amiram Eldar, Sep 15 2024

A375714 Positions of non-successions of consecutive non-perfect-powers. Numbers k such that the k-th non-perfect-power is at least two fewer than the next.

Original entry on oeis.org

2, 5, 11, 19, 20, 24, 27, 39, 53, 69, 87, 107, 110, 112, 127, 151, 177, 196, 204, 221, 233, 265, 299, 317, 334, 372, 412, 454, 481, 497, 543, 591, 641, 693, 747, 803, 861, 921, 959, 982, 1046, 1112, 1180, 1250, 1284, 1321, 1395, 1471, 1549, 1629, 1675, 1710
Offset: 1

Views

Author

Gus Wiseman, Sep 10 2024

Keywords

Comments

Non-perfect-powers (A007916) are numbers with no proper integer roots.

Examples

			The initial non-perfect-powers are 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, which increase by more than one after term 2, term 5, term 11, etc.
		

Crossrefs

First differences are A375702.
Positions of terms > 1 in A375706 (differences of A007916).
The complement for non-prime-powers is A375713, differences A373672.
The complement is A375740.
The version for non-prime-powers is A375928, differences A110969.
Prime-powers inclusive:
- terms: A000961
- differences: A057820
Non-prime-powers inclusive:
- terms: A361102
- differences: A375708

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    ce=Select[Range[100],radQ];
    Select[Range[Length[ce]-1],!ce[[#+1]]==ce[[#]]+1&]
  • Python
    from itertools import count, islice
    from sympy import perfect_power
    def A375714_gen(): # generator of terms
        a, b = -1, 0
        for n in count(1):
            c = not perfect_power(n)
            if c:
                a += 1
            if b&(c^1):
                yield a
            b = c
    A375714_list = list(islice(A375714_gen(),52)) # Chai Wah Wu, Sep 11 2024

Formula

A007916(a(n)+1) - A007916(a(n)) > 1.

A375740 Numbers k such that A007916(k+1) - A007916(k) = 1. In other words, the k-th non-perfect-power is 1 less than the next.

Original entry on oeis.org

1, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Gus Wiseman, Sep 10 2024

Keywords

Comments

Positions in A007916 of numbers k such that k+1 is also a member.
Positions of 1's in A375706 (first differences of A007916).
Non-perfect-powers (A007916) are numbers with no proper integer roots.

Examples

			The non-perfect-powers are 2, 3, 5, 6, 7, 10, 11, 12, 13, ... which increase by one after positions 1, 3, 4, 6, ...
		

Crossrefs

The version for non-prime-powers is A375713, differences A373672.
The complement is A375714, differences A375702.
The version for prime-powers is A375734, differences A373671.
The complement for non-prime-powers is A375928, differences A110969.
A000040 lists the prime numbers, differences A001223.
A000961 lists prime-powers (inclusive), differences A057820.
A001597 lists perfect-powers, differences A053289.
A002808 lists the composite numbers, differences A073783.
A018252 lists the nonprime numbers, differences A065310.
Non-perfect-powers:
- terms: A007916
- differences: A375706
- anti-runs: A375737, A375738, A375739, A375736.
Non-prime-powers (exclusive):
- terms: A361102
- differences: A375708
- anti-runs: A373679, A373575, A255346, A373672

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Join@@Position[Differences[Select[Range[100],radQ]],1]
  • Python
    from itertools import count, islice
    from sympy import perfect_power
    def A375740_gen(): # generator of terms
        a, b = -1, 0
        for n in count(2):
            c = not perfect_power(n)
            if c:
                a += 1
            if b&c:
                yield a
        b = c
    A375740_list = list(islice(A375740_gen(), 52)) # Chai Wah Wu, Sep 11 2024

A375713 Indices of consecutive non-prime-powers (A361102) differing by 1. Numbers k such that the k-th and (k+1)-th non-prime-powers differ by just one.

Original entry on oeis.org

5, 8, 9, 15, 16, 17, 19, 20, 23, 24, 27, 28, 30, 31, 32, 33, 36, 38, 40, 41, 44, 45, 46, 47, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 63, 64, 67, 68, 71, 72, 74, 75, 76, 77, 78, 79, 81, 82, 85, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106
Offset: 1

Views

Author

Gus Wiseman, Sep 02 2024

Keywords

Examples

			The initial non-prime-powers are 1, 6, 10, 12, 14, 15, 18, 20, 21, which first increase by one after the fifth and eighth terms.
		

Crossrefs

The inclusive version is a(n) - 1.
For prime-powers inclusive (A000961) we have A375734, differences A373671.
For nonprime numbers (A002808) we have A375926, differences A373403.
For prime-powers exclusive (A246655) we have A375734(n+1) + 1.
First differences are A373672.
Positions of 1's in A375708.
For non-perfect-powers we have A375740.
Prime-powers inclusive:
- terms: A000961
- differences: A057820
Non-prime-powers inclusive:
- terms: A361102
- differences: A375708
A000040 lists all of the primes, differences A001223.
A007916 lists non-perfect-powers, differences A375706.

Programs

  • Mathematica
    Join@@Position[Differences[Select[Range[100],!PrimePowerQ[#]&]],1]

Formula

A361102(k+1) - A361102(k) = 1.

A375709 Numbers k such that A013929(k+1) = A013929(k) + 1. In other words, the k-th nonsquarefree number is 1 less than the next nonsquarefree number.

Original entry on oeis.org

2, 8, 10, 15, 17, 18, 24, 28, 30, 37, 38, 43, 45, 47, 48, 52, 56, 59, 65, 67, 69, 73, 80, 85, 92, 93, 94, 100, 106, 108, 111, 115, 122, 125, 128, 133, 134, 137, 138, 141, 143, 145, 148, 153, 158, 165, 166, 171, 178, 183, 184, 192, 196, 198, 203, 205, 207, 210
Offset: 1

Views

Author

Gus Wiseman, Sep 01 2024

Keywords

Comments

The difference of consecutive nonsquarefree numbers is at least 1 and at most 4, so there are four disjoint sequences of this type:
- A375709 (difference 1) (this)
- A375710 (difference 2)
- A375711 (difference 3)
- A375712 (difference 4)

Examples

			The initial nonsquarefree numbers are 4, 8, 9, 12, 16, 18, 20, 24, 25, which first increase by one after the 2nd and 8th terms.
		

Crossrefs

Positions of 1's in A078147.
For prime-powers (A246655) we have A375734.
First differences are A373409.
For prime numbers we have A375926.
For squarefree instead of nonsquarefree we have A375927.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.
A053797 gives lengths of runs of nonsquarefree numbers, firsts A373199.
A375707 counts squarefree numbers between consecutive nonsquarefree numbers.

Programs

  • Mathematica
    Join@@Position[Differences[Select[Range[100],!SquareFreeQ[#]&]],1]

Formula

Complement of A375710 U A375711 U A375712.

A375929 Numbers k such that A002808(k+1) = A002808(k) + 1. In other words, the k-th composite number is 1 less than the next.

Original entry on oeis.org

3, 4, 7, 8, 11, 12, 14, 15, 16, 17, 20, 21, 22, 23, 25, 26, 29, 30, 32, 33, 34, 35, 37, 38, 39, 40, 43, 44, 45, 46, 48, 49, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 72, 73, 76, 77, 80, 81, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94
Offset: 1

Views

Author

Gus Wiseman, Sep 12 2024

Keywords

Comments

Positions of 1's in A073783 (see also A054546, A065310).

Examples

			The composite numbers are 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, ... which increase by 1 after positions 3, 4, 7, 8, ...
		

Crossrefs

Positions in A002808 of each element of A068780.
The complement is A065890 shifted.
First differences are A373403 (except first).
The version for non-prime-powers is A375713, differences A373672.
The version for prime-powers is A375734, differences A373671.
The version for non-perfect-powers is A375740.
The version for nonprime numbers is A375926.
A000040 lists the prime numbers, differences A001223.
A000961 lists prime-powers (inclusive), differences A057820.
A002808 lists the composite numbers, differences A073783.
A018252 lists the nonprime numbers, differences A065310.
A046933 counts composite numbers between primes.

Programs

  • Mathematica
    Join@@Position[Differences[Select[Range[100],CompositeQ]],1]
  • Python
    from sympy import primepi
    def A375929(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+bisection(lambda y:primepi(x+2+y))-2
        return bisection(f,n,n) # Chai Wah Wu, Sep 15 2024
    
  • Python
    # faster for initial segment of sequence
    from sympy import isprime
    from itertools import count, islice
    def agen(): # generator of terms
        pic, prevc = 0, -1
        for i in count(4):
            if not isprime(i):
                if i == prevc + 1:
                    yield pic
                pic, prevc = pic+1, i
    print(list(islice(agen(), 10000))) # Michael S. Branicky, Sep 17 2024

Formula

a(n) = A375926(n) - 1.

A375926 Numbers k such that A018252(k+1) = A018252(k) + 1. In other words, the k-th nonprime number is 1 less than the next.

Original entry on oeis.org

4, 5, 8, 9, 12, 13, 15, 16, 17, 18, 21, 22, 23, 24, 26, 27, 30, 31, 33, 34, 35, 36, 38, 39, 40, 41, 44, 45, 46, 47, 49, 50, 53, 54, 55, 56, 58, 59, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 74, 77, 78, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95
Offset: 1

Views

Author

Gus Wiseman, Sep 11 2024

Keywords

Examples

			The nonprime numbers are 1, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, ... which increase by 1 after term 4, term 5, term 8, etc.
		

Crossrefs

The complement appears to be A014689, except the first term.
Positions of 1's in A065310 (see also A054546, A073783).
First differences are A373403 (except first).
The version for non-prime-powers is A375713, differences A373672.
The version for prime-powers is A375734, differences A373671.
The version for non-perfect-powers is A375740.
The version for composite numbers is A375929.
A000040 lists the prime numbers, differences A001223.
A018252 lists the nonprimes, exclusive A002808.
A046933 counts composite numbers between primes.

Programs

  • Mathematica
    Join@@Position[Differences[Select[Range[100],!PrimeQ[#]&]],1]
  • Python
    from sympy import primepi
    def A375926(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+bisection(lambda y:primepi(x+1+y))-1
        return bisection(f,n,n) # Chai Wah Wu, Sep 15 2024

A375928 Positions of adjacent non-prime-powers (exclusive) differing by more than 1.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 10, 11, 12, 13, 14, 18, 21, 22, 25, 26, 29, 34, 35, 37, 39, 42, 43, 48, 49, 50, 55, 62, 65, 66, 69, 70, 73, 80, 83, 84, 86, 91, 92, 101, 102, 107, 112, 115, 116, 119, 124, 125, 134, 135, 138, 139, 150, 161, 164, 165, 168, 173, 174, 175, 182
Offset: 1

Views

Author

Gus Wiseman, Sep 12 2024

Keywords

Examples

			The non-prime-powers (exclusive) are 1, 6, 10, 12, 14, 15, 18, 20, ... which increase by more than 1 after positions 1, 2, 3, 4, 6, 7, ...
		

Crossrefs

For prime-powers inclusive (A000961) we have A376163, differences A373672.
For nonprime numbers (A002808) we have A014689, differences A046933.
First differences are A110969.
The complement is A375713.
For non-perfect-powers we have A375714, complement A375740.
The complement for prime-powers (exclusive) is A375734, differences A373671.
The complement for nonprime numbers is A375926, differences A373403.
A000040 lists the prime numbers, differences A001223.
A000961 lists prime-powers (inclusive), differences A057820.
A007916 lists non-perfect-powers, differences A375706.
A024619 lists non-prime-powers (inclusive), differences A375735.
A246655 lists prime-powers (exclusive), differences A174965.
A361102 lists non-prime-powers (exclusive), differences A375708.

Programs

  • Mathematica
    ce=Select[Range[100],!PrimePowerQ[#]&];
    Select[Range[Length[ce]-1],!ce[[#+1]]==ce[[#]]+1&]

Formula

The inclusive version is a(n+1) - 1.

A376163 Positions of adjacent non-prime-powers (inclusive, so 1 is a prime-power) differing by 1.

Original entry on oeis.org

4, 7, 8, 14, 15, 16, 18, 19, 22, 23, 26, 27, 29, 30, 31, 32, 35, 37, 39, 40, 43, 44, 45, 46, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 62, 63, 66, 67, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 84, 86, 87, 88, 89, 92, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105
Offset: 1

Views

Author

Gus Wiseman, Sep 13 2024

Keywords

Examples

			The non-prime-powers (inclusive) are 6, 10, 12, 14, 15, 18, 20, 21, 22, 24, ... which increase by 1 after positions 4, 7, 8, ...
		

Crossrefs

For prime-powers inclusive (A000961) we have A375734, differences A373671.
For nonprime numbers (A002808) we have A375926, differences A373403.
For prime-powers exclusive (A246655) we have A375734(n+1) + 1.
First differences are A373672.
The exclusive version is a(n) - 1 = A375713.
Positions of 1's in A375735.
For non-perfect-powers we have A375740.
Prime-powers inclusive:
- terms: A000961
- differences: A057820
Non-prime-powers inclusive:
- terms: A361102
- differences: A375708
A000040 lists all of the primes, differences A001223.
A007916 lists non-perfect-powers, differences A375706.

Programs

  • Mathematica
    ce=Select[Range[2,100],!PrimePowerQ[#]&];
    Select[Range[Length[ce]-1],ce[[#+1]]==ce[[#]]+1&]
Showing 1-10 of 10 results.