A375758 Lexicographically earliest sequence of distinct positive integers such that for any n > 0, the initial digit of n divides a(n).
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 21, 27, 33, 39, 42, 45, 48, 51, 54, 57, 40, 44, 52, 56, 60, 64, 68, 72, 76, 80, 25, 35, 50, 55, 65, 70, 75, 85, 90, 95, 66, 78, 84, 96, 102, 108, 114
Offset: 1
Examples
The first terms are: n a(n) a(n)/A30(n) | n a(n) a(n)/A30(n) -- ---- ----------- | -- ---- ----------- 1 1 1 | 16 16 16 2 2 1 | 17 17 17 3 3 1 | 18 18 18 4 4 1 | 19 19 19 5 5 1 | 20 20 10 6 6 1 | 21 22 11 7 7 1 | 22 24 12 8 8 1 | 23 26 13 9 9 1 | 24 28 14 10 10 10 | 25 30 15 11 11 11 | 26 32 16 12 12 12 | 27 34 17 13 13 13 | 28 36 18 14 14 14 | 29 38 19 15 15 15 | 30 21 7
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
- Rémy Sigrist, PARI program
- Index entries for sequences that are permutations of the natural numbers
Programs
-
PARI
\\ See Links section.
-
Python
from itertools import count, islice def agen(): # generator of terms aset, m = set(), 1 for n in count(1): n1 = int(str(n)[0]) an = next(k for k in count(m) if k not in aset and k%n1 == 0) yield an aset.add(an) while m in aset: m += 1 print(list(islice(agen(), 67))) # Michael S. Branicky, Jan 27 2025
Comments