cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375766 The maximum exponent in the prime factorization of the numbers whose exponents in their prime factorization are all Fibonacci numbers.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 5, 1, 2, 2, 2, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Aug 27 2024

Keywords

Comments

First differs from A375768 at n = 2448.
All the terms are Fibonacci numbers by definition.

Crossrefs

Programs

  • Mathematica
    fibQ[n_] := Or @@ IntegerQ /@ Sqrt[5*n^2 + {-4, 4}]; s[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, fibQ], Max[e], Nothing]]; s[1] = 0; Array[s, 100]
  • PARI
    isfib(n) = issquare(5*n^2 - 4) || issquare(5*n^2 + 4);
    lista(kmax) = {my(e, ans); print1(0, ", "); for(k = 2, kmax, e = factor(k)[,2]; ans = 1; for(i = 1, #e, if(!isfib(e[i]), ans = 0; break)); if(ans, print1(vecmax(e), ", ")));}

Formula

a(n) = A051903(A115063(n)).
a(n) = A000045(A375767(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (1/zeta(2) + Sum_{k>=3} (Fibonacci(k) * (d(k) - d(k-1)))) / A375274 = 1.52546070254904121983..., where d(k) = Product_{p prime} ((1-1/p)*(1 + Sum_{i=2..k} 1/p^Fibonacci(i))) for k >= 3, and d(2) = 1/zeta(2).