A375773 Expansion of e.g.f. exp((exp(x) - 1)^5).
1, 0, 0, 0, 0, 120, 1800, 16800, 126000, 834120, 6917400, 129399600, 3259080000, 72252300120, 1370602233000, 23218349918400, 377834084082000, 6709735404918120, 147369456297228600, 3899127761438053200, 109421543771265852000, 3002806840023201408120
Offset: 0
Keywords
Programs
-
PARI
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((exp(x)-1)^5)))
-
PARI
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=120*sum(j=1, i, binomial(i-1, j-1)*stirling(j, 5, 2)*v[i-j+1])); v;
-
PARI
a(n) = sum(k=0, n\5, (5*k)!*stirling(n, 5*k, 2)/k!);
Formula
G.f.: Sum_{k>=0} (5*k)! * x^(5*k)/(k! * Product_{j=1..5*k} (1 - j * x)).
a(0) = 1; a(n) = 120 * Sum_{k=1..n} binomial(n-1,k-1) * Stirling2(k,5) * a(n-k).
a(n) = Sum_{k=0..floor(n/5)} (5*k)! * Stirling2(n,5*k)/k!.