cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375779 Noll index series of Zernike polynomials converted to ANSI index.

Original entry on oeis.org

0, 2, 1, 4, 3, 5, 7, 8, 6, 9, 12, 13, 11, 14, 10, 18, 17, 19, 16, 20, 15, 24, 23, 25, 22, 26, 21, 27, 31, 32, 30, 33, 29, 34, 28, 35, 40, 41, 39, 42, 38, 43, 37, 44, 36, 50, 49, 51, 48, 52, 47, 53, 46, 54, 45, 60, 59, 61, 58, 62, 57, 63, 56, 64, 55, 65, 71, 72, 70, 73, 69, 74, 68, 75, 67, 76, 66, 77
Offset: 1

Views

Author

Gerhard Ramsebner, Aug 27 2024

Keywords

Comments

ANSI indices of Zernike polynomials sorted by Noll index.

Examples

			Noll indices     ANSI indices
 1                0
 3 2              1 2
 5 4 6            3 4 5
 9 7 8 10         6 7 8 9
 15 13 11 12 14   10 11 12 13 14
 ...              ...
		

Crossrefs

Cf. A176988.

Programs

  • Maple
    A375779 := proc(j::integer)
        n := floor((sqrt(8*(j-1)+1)-1)/2) ;
        m := (-1)^j*(modp(n,2)+2*floor((j-n*(n+1)/2-1+modp(n+1,2))/2)) ;
        (n*(n+2)+m)/2 ;
    end proc:
    seq(A375779(j),j=1..40) ; # R. J. Mathar, Mar 27 2025
  • PARI
    for(j=1, 28, my(n=floor((sqrt(8*(j-1)+1)-1)/2)); my(m=(-1)^j*(n%2+2*floor((j-n*(n+1)/2-1+(n+1)%2)/2))); print(j,",",(n*(n+2)+m)/2))

Formula

a(j) = (n(n+2)+m)/2 where n=floor( (sqrt(8*(j-1)+1)-1)/2 ) =A003056(j-1) and m = (-1)^j *( mod(n,2)+2*floor((j-n*(n+1)/2-1+mod(n+1,2))/2) ).
Quasi-inverse: A176988(1+a(n)) = n assuming offset 1 in A176988 and serialized format. - R. J. Mathar, Mar 26 2025