A375779 Noll index series of Zernike polynomials converted to ANSI index.
0, 2, 1, 4, 3, 5, 7, 8, 6, 9, 12, 13, 11, 14, 10, 18, 17, 19, 16, 20, 15, 24, 23, 25, 22, 26, 21, 27, 31, 32, 30, 33, 29, 34, 28, 35, 40, 41, 39, 42, 38, 43, 37, 44, 36, 50, 49, 51, 48, 52, 47, 53, 46, 54, 45, 60, 59, 61, 58, 62, 57, 63, 56, 64, 55, 65, 71, 72, 70, 73, 69, 74, 68, 75, 67, 76, 66, 77
Offset: 1
Examples
Noll indices ANSI indices 1 0 3 2 1 2 5 4 6 3 4 5 9 7 8 10 6 7 8 9 15 13 11 12 14 10 11 12 13 14 ... ...
Links
- Gerhard Ramsebner, Table of n, a(n) for n = 1..10000
- Robert J. Noll, Zernike polynomials and atmospheric turbulence, J. Opt. Soc. Am. 1976, 66, 207-211.
- Gerhard Ramsebner, Noll index of Zernike polynomials (animated SVG)
- Gerhard Ramsebner, PDF
- Wikipedia, Noll's sequential indices
Crossrefs
Cf. A176988.
Programs
-
Maple
A375779 := proc(j::integer) n := floor((sqrt(8*(j-1)+1)-1)/2) ; m := (-1)^j*(modp(n,2)+2*floor((j-n*(n+1)/2-1+modp(n+1,2))/2)) ; (n*(n+2)+m)/2 ; end proc: seq(A375779(j),j=1..40) ; # R. J. Mathar, Mar 27 2025
-
PARI
for(j=1, 28, my(n=floor((sqrt(8*(j-1)+1)-1)/2)); my(m=(-1)^j*(n%2+2*floor((j-n*(n+1)/2-1+(n+1)%2)/2))); print(j,",",(n*(n+2)+m)/2))
Formula
a(j) = (n(n+2)+m)/2 where n=floor( (sqrt(8*(j-1)+1)-1)/2 ) =A003056(j-1) and m = (-1)^j *( mod(n,2)+2*floor((j-n*(n+1)/2-1+mod(n+1,2))/2) ).
Quasi-inverse: A176988(1+a(n)) = n assuming offset 1 in A176988 and serialized format. - R. J. Mathar, Mar 26 2025
Comments