cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375780 a(n) = Sum_{k=0..n} binomial(n,k) * (k! * S(n,k))^2, where S(,) are Stirling numbers of second kind.

Original entry on oeis.org

1, 1, 6, 147, 6940, 536405, 62352066, 10136833063, 2195583006072, 611230451090409, 212649006828729790, 90405046457569649531, 46115367523234055367828, 27797472578675758999950013, 19546873204979999617317371898, 15858780455222184878234284613775, 14703883436182303949571115531615216, 15450188317599029331216704733732600017
Offset: 0

Views

Author

Max Alekseyev, Aug 27 2024

Keywords

Crossrefs

Cf. A048144.

Programs

  • Mathematica
    A375780[n_] := Sum[Binomial[n, k]*(k!*StirlingS2[n, k])^2, {k, 0, n}];
    Array[A375780, 20, 0] (* Paolo Xausa, Nov 07 2024 *)
  • PARI
    { a375780(n) = sum(k=0,n, binomial(n,k) * (k!*stirling(n,k,2))^2); }

Formula

a(n) = n! * Sum_{k=0..n} k^n/k! * Sum_{m=0}^{n-k} (m+k)!/m!/(n-k-m)! * (-1)^m * S(n,m+k).
G.f.: the diagonal of 1 - t(x,y)*W'(t(x,y)), where t(x,y) := x*(1-e^y)*e^(x*(2-e^y)) and W() is Lambert W function.
a(n) ~ c * d^n * n^(2*n), where d = (2*r-1)^2*r/(exp(2)*(-1 + r + sqrt((1-r)*r))^2) = 0.522647981756854997298666108603651720918622906877425888529..., r = 0.665183670620587020892773716469052817866519211832581651... is the root of the equation (1-r)*(1 + r*LambertW(-1/(exp(1/r)*r)))^2 = r^3*LambertW(-1/(exp(1/r)*r))^2 and c = 1.38671243965876142096898080117513697606381035589463940412659515589... - Vaclav Kotesovec, Nov 07 2024