cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375791 a(n) = A375516(n+1) / A375516(n).

Original entry on oeis.org

2, 2, 3, 4, 25, 201, 40201, 1212060151, 1305857607493406801, 1534737681943564047120326770001682121, 11777098761887521784975815904636471022877972047160405176265171997646882601
Offset: 0

Views

Author

Rémy Sigrist and N. J. A. Sloane, Aug 29 2024

Keywords

Examples

			a(7) = A375516(8) / A375516(7) = 11752718467440661200 / 9696481200 = 1212060151.
		

Crossrefs

Programs

  • Maple
    s:= proc(n) s(n):= `if`(n=0, 0, s(n-1)+1/(n*b(n))) end:
    b:= proc(n) b(n):= 1+floor(1/((1-s(n-1))*n)) end:
    a:= n-> denom(s(n+1))/denom(s(n)):
    seq(a(n), n=0..10);  # Alois P. Heinz, Oct 19 2024
  • Mathematica
    s[n_] := s[n] = If[n == 0, 0, s[n-1] + 1/(n*b[n])];
    b[n_] := b[n] = 1 + Floor[1/((1 - s[n-1])*n)];
    a[n_] := Denominator[s[n+1]]/Denominator[s[n]];
    Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Jul 02 2025, after Alois P. Heinz *)
  • PARI
    { r = 1; for (n = 1, 11, a = floor(1/(r*n))+1; d = denominator(r); r -= 1/(n*a); print1 (denominator(r)/d", ");); }
    
  • Python
    from itertools import count, islice
    from math import gcd
    def A375791_gen(): # generator of terms
        p, q = 0, 1
        for k in count(1):
            m = q//(k*(q-p))+1
            p, q = p*k*m+q, k*m*q
            p //= (r:=gcd(p,q))
            q //= r
            yield k*m//r
    A375791_list = list(islice(A375791_gen(),11)) # Chai Wah Wu, Aug 30 2024