A375805 Decimal expansion of Sum_{n >= 1} 1/A171397(n).
2, 6, 2, 8, 3, 3, 2, 8, 2, 0, 4, 8, 8, 1, 4, 2, 0, 7, 6, 9, 9, 4, 0, 1, 5, 1, 6, 8, 7, 4, 4, 4, 2, 2, 2, 9, 2, 4, 1, 8, 8, 7, 9, 8, 0, 9, 2, 5
Offset: 2
Examples
26.2833282048814207699401516874442229241887980925...
References
- Burnol, Jean-François. "Moments in the exact summation of the curious series of Kempner type." arXiv preprint arXiv:2402.08525 (2024).
- A. J. Kempner, A Curious Convergent Series, American Mathematical Monthly, 21 (February, 1914), pp. 48-50. (https://dx.doi.org/10.2307/2972074)
- Schmelzer, Thomas, and Robert Baillie. "Summing a curious, slowly convergent series." The American Mathematical Monthly 115.6 (2008): 525-540.
Links
- Robert Baillie, Sums of reciprocals of integers missing a given digit, Amer. Math. Monthly, 86 (1979), 372-374.
- Robert Baillie, Summing the curious series of Kempner and Irwin, arXiv:0806.4410 [math.CA], 2008-2015.
- Robert Baillie & Thomas Schmelzer, Summing Kempner's Curious (Slowly-Convergent) Series, Wolfram Library Archive
- G. W. Brewster, An Old Result in a New Dress, The Mathematical Gazette, Vol. 37, No. 322 (Dec., 1953), pp. 269-270.
- John D. Cook, A strange take on the harmonic series, Blog, 29 August 2024.
- N. J. A. Sloane, A Nasty Surprise in a Sequence and Other OEIS Stories, Experimental Mathematics Seminar, Rutgers University, Oct 10 2024, Youtube video; Slides [Mentions this sequence]
- Eric Weisstein's World of Mathematics, Kempner Series.
- Wikipedia, Kempner series. [From _M. F. Hasler_, Jan 13 2020]
Crossrefs
Extensions
Corrected data provided by Gareth McCaughan, Sep 02 2024
Comments