A375816 Odd numbers k > 1 such that gcd(5,k) = 1 and 5^((k-1)/2) == -(5/k) (mod k), where (5/k) is the Jacobi symbol (or Kronecker symbol); Euler pseudoprimes to base 5 (A262052) that are not Euler-Jacobi pseudoprimes to base 5 (A375914).
217, 13333, 16297, 23653, 30673, 44173, 46657, 48133, 56033, 98173, 130417, 131977, 136137, 179893, 188113, 190513, 197633, 267977, 334153, 334657, 347777, 360533, 407353, 412933, 421637, 486157, 667153, 670033, 677917, 694153, 710533, 765073, 839833, 935137, 997633
Offset: 1
Keywords
Examples
217 is a term because (5/217) = -1, and 5^((217-1)/2) == 1 (mod 217).
Links
- Jianing Song, Table of n, a(n) for n = 1..1000
- Mathematics Stack Exchange, There are no a in Z and odd k > 1 such that (a/k) = 1 and a^((k-1)/2) == -1 (mod k)
Crossrefs
| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+---------+----------+
-----------------------------------+-------------------+---------+----------+
-----------------------------------+-------------------+---------+----------+
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+---------+----------+
(union of first two) | | | |
-----------------------------------+-------------------+---------+----------+
(union of all three) | | | |
Comments