A375852 Numbers congruent to {0, 1, 3, 6, 7, 9, 12, 15} mod 18.
0, 1, 3, 6, 7, 9, 12, 15, 18, 19, 21, 24, 25, 27, 30, 33, 36, 37, 39, 42, 43, 45, 48, 51, 54, 55, 57, 60, 61, 63, 66, 69, 72, 73, 75, 78, 79, 81, 84, 87, 90, 91, 93, 96, 97, 99, 102, 105, 108, 109, 111, 114, 115, 117, 120, 123, 126, 127, 129, 132, 133, 135, 138, 141, 144, 145, 147, 150
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-2,2,-2,2,-1).
Programs
-
Mathematica
Select[Range[0, 200], MemberQ[{0, 1, 3, 6, 7, 9, 12, 15}, Mod[#, 18]] &] (* Amiram Eldar, Aug 31 2024 *)
Formula
From Stefano Spezia, Sep 03 2024: (Start)
G.f.: x^2*(1 + x + 2*x^2 - x^3 + 3*x^4 + 3*x^6)/((1 - x)^2*(1 + x^2 + x^4 + x^6)).
E.g.f.: ((9*x - 14)*cosh(x) + sin(x) + 2*sqrt(2)*cosh(x/sqrt(2))*sin(x/sqrt(2)) + (9*x - 14)*sinh(x) + 2*(6 + cos(x) + (sqrt(2)*cos(x/sqrt(2)) + sin(x/sqrt(2)))*sinh(x/sqrt(2))))/4. (End)
Comments